GEOGRAPHIC DISTRIBUTION AND ECOLOGICAL MODELING OF TRYPANOSOMA (TRYPANOSOMATIDAE) INFECTIONS IN SOUTH AMERICAN FROGS
DOI:
https://doi.org/10.56238/revgeov16n5-291Keywords:
Ecological Niche Modeling, MaxEnt, Anuran Parasites, Climatic SuitabilityAbstract
Trypanosomatids of the genus Trypanosoma include species widely distributed in vertebrates, but their occurrence in neotropical anurans remains poorly explored. In this study, we conducted a systematic review of the available literature on Trypanosoma infections in anurans from South America and compiled georeferenced records to characterize their known distribution. Furthermore, we employed ecological niche modeling (MaxEnt) to estimate areas of climatic suitability favorable to the parasite's occurrence on the continent. Our results show that records are concentrated mainly in Brazil, involving approximately 30 anuran species belonging to multiple families, while large areas of South America remain unsampled. The model showed satisfactory performance (AUC = 0.75) and indicated that the Cerrado region and transition zones with the Amazon and Pantanal have a higher climatic probability of occurrence, mainly influenced by average annual temperature, annual precipitation, and precipitation seasonality. The overlap between highly suitable areas and occurrence points reinforces the role of climatic variables as predictors of the parasite's distribution. Our results reveal a still underestimated diversity of Trypanosoma in Neotropical amphibians and highlight the need to expand sampling efforts and incorporate integrated approaches for the taxonomic and ecological characterization of these parasites.
Downloads
References
ABDELAAL, M.; FOIS, M.; FENU, G.; BACCHETTA, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crep. in Egypt. Ecological Informatics, v. 50, p. 68-75, 2019. https://doi.org/10.1016/j.ecoinf.2019.01.003
ALMEIDA, P. H. A. Detecção molecular de protozoários em mamíferos silvestres oriundos da Mata Atlântica – Bahia (2020). Tese (Doutorado) – Universidade Federal da Bahia, 2020.
BEEBEE, T. J.; GRIFFITHS, R. A. The amphibian decline crisis: a watershed for conservation biology? Biological Conservation, v. 125, p. 271-285, 2005. https://doi.org/10.1016/j.biocon.2005.04.009
BERNAL, X. E.; PINTO, C. M. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. International Journal for Parasitology: Parasites and Wildlife, v. 5, n. 1, p. 40-47, 2016.
CLARK, T. B. Comparative Morphology of Four Genera of Trypanosomatidae. The Journal of Protozoology, v. 6, n. 3, p. 227-232, 1959.
COELHO, T. A.; SOUZA, D. C. D.; KAWASHITA-RIBEIRO, R. A.; CORREA, L. L. First record of Trypanosoma sp. (Kinetoplastea: Trypanosomatidae) parasiting Rhinella major in the Brazilian Amazon. Anais da Academia Brasileira de Ciências, v. 93, n. 2, e20190467, 2021.
COSTA, G. C.; SCHLUPP, I. Biogeography of the Amazon molly: ecological niche and range limits of an asexual hybrid species. Global Ecology and Biogeography, v. 19, p. 442-451, 2010. https://doi.org/10.1111/j.1466-8238.2010.00546.x
ELITH, J.; GRAHAM, C. H.; ANDERSON, R. P. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, v. 29, p. 129-151, 2006. https://doi.org/10.1111/j.2006.0906-7590.04596.x
ELLWANGER, J. H.; CHIES, J. A. B. Zoonotic spillover: Understanding basic aspects for better prevention. Genetics and Molecular Biology, v. 44, n. 1 (Suppl 1), e20200355, 2021. https://doi.org/10.1590/1678-4685-GMB-2020-0355
FAO. Food and Agriculture Organization of the United Nations. 2011. Disponível em: http://faostat3.fao.org/browse/area/*/E. Acesso em: dez. 2025.
FERREIRA, S. J. I.; DA COSTA, A. P.; RAMIREZ, D.; ROLDAN, J. A.; SARAIVA, D.; DA S. FOUNIER, G. F.; … MARCILI, A. Anuran trypanosomes: phylogenetic evidence for new clades in Brazil. Systematic Parasitology, v. 91, n. 1, p. 63-70, 2015.
FOIS, M.; CUENA-LOMBRANA, A.; FENU, G.; BACCHETTA, G. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecological Modelling, v. 385, p. 124-132, 2018. https://doi.org/10.1016/j.ecolmodel.2018.07.018
GARREAUD, R. D.; VUILLE, M.; COMPAGNUCCI, R.; MARENGO, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 281, p. 180-195, 2009. https://doi.org/10.1016/j.palaeo.2007.10.032
HADDAD, C. F. B.; TOLEDO, L. F.; PRADO, C. A. Anfíbios da Mata Atlântica: guia dos anfíbios anuros da Mata Atlântica. São Paulo: Editora Neotropica, 2008.
HIJMANS, R. J.; CAMERON, S. E.; PARRA, J. L.; JONES, P. G.; JARVIS, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, v. 25, p. 1965-1978, 2005. https://doi.org/10.1002/joc.1276
HIJMANS, R. J.; PHILLIPS, J.; LEATHWICK, J. E. Dismo: species distribution modeling. R package, v. 1, p. 1-4, 2017. Disponível em: https://cran.r-project.org/web/packages/dismo/dismo.pdf. Acesso em: dez. 2025.
HOLT, R. D. On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research, v. 5, p. 159-178, 2003.
HOLT, R. D.; KEITT, T. H. Species’ borders: a unifying theme in ecology. Oikos, v. 108, p. 3-6, 2005. https://doi.org/10.1111/j.0030-1299.2005.13145.x
HONIGBERG, B. M. Evolutionary and systematic relationships in the flagellate order Trichomonadida Kirby. Journal of Protozoology, v. 10, p. 20-63, 1963. https://doi.org/10.1111/j.1550-7408.1963.tb01635.x
HYNE, R. V.; WILSON, S.; BYRNE, M. Frogs as bioindicators of chemical usage and farm practices in an irrigated agricultural area. Final Report to Land & Water Australia, 2009.
KAUFER, A.; ELLIS, J.; STARK, D.; BARRATT, J. The evolution of trypanosomatid taxonomy. Parasites & Vectors, v. 10, p. 287-1-17, 2017. https://doi.org/10.1186/s13071-017-2204-7
LEAL, D. D.; O’DWYER, L. H.; RIBEIRO, V. C.; SILVA, R. J.; FERREIRA, V. L.; RODRIGUES, R. B. Hemoparasites of the genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and hemogregarines in anurans of the São Paulo and Mato Grosso do Sul States—Brazil. Anais da Academia Brasileira de Ciências, v. 81, p. 199-206, 2009.
LEMOS, M.; MORAIS, D. H.; CARVALHO, V. T.; D’AGOSTO, M. First record of Trypanosoma chattoni in Brazil and occurrence of other Trypanosoma species in Brazilian frogs. Journal of Parasitology, v. 94, n. 1, p. 148-151, 2008.
LUKEŠ, J.; BUTENKO, A.; HASHIMI, H.; MASLOV, D. A.; VOTÝPKA, J.; YURCHENKO, Y. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends in Parasitology, v. 34, n. 6, p. 466-480, 2018.
MEGÍA-PALMA, R.; SÁNCHEZ-MONTES, G.; NETHERLANDS, E.; PALOMAR, G.; MARTÍNEZ-SOLANO, Í. High prevalence of Trypanosoma infection in Iberian green frogs (Pelophylax perezi): negative relationship with two indices of body condition. Basic and Applied Herpetology, v. 38, p. 91-110, 2024.
OLIVAL, K. J.; HOSSEINI, P. R.; ZAMBRANA-TORRELIO, C.; ROSS, N.; BOGICH, T. L.; DASZAK, P. Host and viral traits predict zoonotic spillover from mammals. Nature, v. 546, p. 646-650, 2017. https://doi.org/10.1038/nature22975
ORTIZ-BAEZ, A. S.; COUSINS, K.; EDEN, J. S.; CHANG, W. S.; HARVEY, E.; PETTERSSON, J. H. O.; … HOLMES, E. C. Meta-transcriptomic identification of Trypanosoma spp. in Australian wildlife. Parasites & Vectors, v. 13, n. 1, p. 447, 2020.
PETERSON, A. T. Predicting species’ geographic distributions based on ecological niche modeling. The Condor, v. 103, p. 599-605, 2001. https://doi.org/10.1650/0010-5422(2001)103[0599:PSGDBO]2.0.CO;2
PETERSON, A. T.; BALL, L. G.; COHOON, K. P. Predicting distributions of Mexican birds using ecological niche modelling methods. Ibis, v. 144, p. e27-e32, 2002. https://doi.org/10.1046/j.0019-1019.2001.00031.x
PHILLIPS, S. J. Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. Ecography, v. 31, p. 272-278, 2008. https://doi.org/10.1111/j.0906-7590.2008.5378.x
PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, v. 190, p. 231-259, 2006. https://doi.org/10.1016/j.ecolmodel.2005.03.026
PHILLIPS, S. J.; ELITH, J. POC plots: calibrating species distribution models with presence-only data. Ecology, v. 91, p. 2476-2484, 2010. https://doi.org/10.1890/09-0760.1
PINHO, S. R.; RODRIGUEZ-MALAGA, S.; LOZANO-OSORIO, R.; CORREA, F. S.; SILVA, I. B.; SANTOS-COSTA, M. C. Effects of the habitat on anuran blood parasites in the Eastern Brazilian Amazon. Anais da Academia Brasileira de Ciências, v. 93 (Suppl 4), e20201703, 2021.
R CORE TEAM. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2020. Disponível em: https://www.r-project.org/. Acesso em: dez. 2025.
REBOITA, M. S.; GAN, M. A.; ROCHA, R. P. D.; AMBRIZZI, T. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, v. 25, p. 185-204, 2010. https://doi.org/10.1590/S0102-77862010
RODRIGUES, A. F. S. F.; MORAIS, D. H.; CARVALHO, V. T.; D’AGOSTO, M.; LEMOS, M. Morphological and morphometric characterization of trypanosomes in Leptodactylus lineatus and Osteocephalus sp. Revista Brasileira de Zoociências, v. 20, p. 1-10, 2019.
SANTOS, J. C.; TARVIN, R. D.; O’CONNELL, L. A.; BLACKBURN, D. C.; COLOMA, L. A. Diversity within diversity: parasite species richness in poison frogs assessed by transcriptomics. Molecular Phylogenetics and Evolution, v. 125, p. 40-50, 2018.
SEGALLA, M.; BERNECK, B.; CANEDO, C. et al. List of Brazilian Amphibians. Herpetologia Brasileira, v. 10, p. 121-216, 2021. https://doi.org/10.5281/zenodo.4716176
SILVANO, D. L.; SEGALLA, M. V. Conservação de anfíbios no Brasil. Megadiversidade, v. 1, p. 79-86, 2005.
SPODAREVA, V. V.; GRYBCHUK-IEREMENKO, A.; LOSEV, A.; VOTÝPKA, J.; LUKEŠ, J.; YURCHENKO, V.; KOSTYGOV, A. Y. Diversity and evolution of anuran trypanosomes: insights from European species. Parasites & Vectors, v. 11, p. 447, 2018. https://doi.org/10.1186/s13071-018-3023-1
STUART, S. N.; CHANSON, J. S.; COX, N. A.; YOUNG, B. E.; RODRIGUES, A. S. L.; FISCHMAN, D. L.; WALLER, R. W. Status and trends of amphibian declines and extinctions worldwide. Science, v. 306, p. 1783-1786, 2004. https://doi.org/10.1126/science.1103538
WELLS, K.; CLARK, N. J. Host specificity in variable environments. Trends in Parasitology, v. 35, n. 6, p. 452-465, 2019. https://doi.org/10.1016/j.pt.2019.04.001
WHILES, M. R.; LIPS, K. R.; PRINGLE, C. M. et al. The effects of amphibian population declines on the structure of Neotropical stream ecosystems. Frontiers in Ecology and the Environment, v. 4, p. 27-34, 2006. https://doi.org/10.1890/1540-9295(2006)004[0027:TEOAPD]2.0.CO;2
WOO, P. T.; BOGART, J. P. Trypanosoma spp. (Protozoa: Kinetoplastida) in Hylidae (Anura) from eastern North America: distribution and prevalence. Canadian Journal of Zoology, v. 62, p. 820-824, 1984.