GREENHOUSE GAS EMISSIONS IN A YELLOW LATOSOL UNDER AGRICULTURAL MANAGEMENT IN PARAGOMINAS-PA
DOI:
https://doi.org/10.56238/revgeov17n1-117Abstract
Understanding greenhouse gas (GHG) dynamics in tropical agricultural systems is essential for improving national inventories and guiding low-emission management strategies. This study quantified soil–atmosphere nitrous oxide (N₂O) and methane (CH₄) fluxes in soybean fields managed under conventional tillage (CT) and no-tillage (NT) in very clayey Yellow Latosols of eastern Amazonia. Fluxes were measured across three phenological phases using static chambers, coupled with soil moisture and temperature monitoring. Overall, N₂O and CH₄ fluxes were low in both systems, reflecting the well-drained conditions, low water-filled pore space, and limited labile carbon characteristic of these Oxisols. N₂O emissions showed modest temporal variability but no statistical differences between CT and NT, and no rainfall-induced pulses were detected. CH₄ fluxes were negative or near zero throughout the season, indicating net atmospheric CH₄ uptake, with slightly higher consumption under NT during the late season. Soil moisture and temperature exhibited similar averages across systems, but their temporal dynamics helped explain gas-flux patterns. Collectively, the results demonstrate that microenvironmental controls exert stronger influence on GHG fluxes than tillage practices under these soil and climatic conditions. These findings provide empirical evidence to refine regional emission factors and improve the representation of tropical agricultural systems in Brazil’s GHG inventory.
Downloads
References
Abalos, D., Recous, S., Butterbach-Bahl, K., De Notaris, C., Rittl, T. F., Topp, C. F. E., Petersen, S. O., & et al. (2022). A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment, 828, Article 154388. https://doi.org/10.1016/j.scitotenv.2022.154388
Alves, L. W. R., Carvalho, E. J. M., Silva, L. G. T., Martorano, L. G., Siviero, M. A., Tourne, D. C. M., Vieira, S. B., Fitzjarrald, D. R., Vettorazzi, C. A., Brienza Júnior, S., Yeared, J. A. G., Meyering, É., & Lisboa, L. S. S. (2014). Diagnóstico agrícola do município de Paragominas, PA (Boletim de Pesquisa e Desenvolvimento No. 91). Embrapa Amazônia Oriental.
Armacolo, N. M., Mombach, M. A., da Silveira, J. G., Romeiro, S. O., & Rodrigues, R. A. R. (2015). Emissões de gases de efeito estufa em sistema agroflorestal na região da Amazônia Matogrossense. In Anais do 35º Congresso Brasileiro de Ciência do Solo. Sociedade Brasileira de Ciência do Solo; Embrapa Solos.
Berndt, A., & et al. (2013). Dados de inventários nacionais de GEE no setor agropecuário [Relatório institucional]. Embrapa / SEEG.
Brasil. Embrapa Solos. (2017). Manual de métodos de análise de solo (3ª ed. rev. e ampl.). Embrapa Solos.
Brasil. Embrapa Solos. (2018). Sistema brasileiro de classificação de solos (5ª ed. rev. e ampl.). Embrapa. ISBN 978-85-7035-817-2
Brasil. Ministério da Ciência, Tecnologia e Inovações. (2020). Quarta comunicação nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima. MCTI. ISBN 978-65-87432-18-2
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), Article 20130122. https://doi.org/10.1098/rstb.2013.0122
Carvalho, J. L. N., Avanzi, J. C., Silva, M. L. N., Mello, C. R., & Cerri, C. E. P. (2010). Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo, 34(2), 277–289. https://doi.org/10.1590/S0100-06832010000200001
Coe, M. T., Brando, P. M., Deegan, L. A., Macedo, M. N., Neill, C., & Silvério, D. V. (2017). The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Tropical Conservation Science, 10. https://doi.org/10.1177/1940082917720671
Covey, K., Soper, F. M., Pangala, S. R., Bernardino, A. F., Pagliaro, Z., & et al. (2021). Carbon and beyond: The biogeochemistry of climate in a rapidly changing Amazon. Frontiers in Forests and Global Change, 4, Article 618401. https://doi.org/10.3389/ffgc.2021.618401
Cowan, N., Maire, J., Krol, D., Cloy, J. M., Hargreaves, P., Murphy, R., Carswell, A., & et al. (2021). Agricultural soils: A sink or source of methane across regions. European Journal of Soil Science, 72(6), 1842. https://doi.org/10.1111/ejss.13075
da Cruz Corrêa, D. C., Poccard-Chapuis, R., Blanfort, V., Bochu, J.-L., & Lescoat, P. (2025). Impacts of cattle farming practices and associated livestock systems on energy balances and greenhouse gas emissions in the municipality of Paragominas - State of Pará - Amazonia. Deleted Journal, 15, Article 14461. https://doi.org/10.3389/past.2025.14461
Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2014). Projetos estruturantes para mitigação de gases de efeito estufa: Pecus, Saltus e Fluxus. Embrapa Meio Ambiente; Embrapa Agricultura Digital.
Fearnside, P. M. (2018). Brazil's Amazonian forest carbon: The key to Southern Amazonia's significance for global climate. Regional Environmental Change, 18(1), 47–61. https://doi.org/10.1007/s10113-016-1007-2
Gatti, L. V., Basso, L. S., Miller, J. B., & et al. (2021). Amazonia as a carbon source linked to deforestation and climate change. Nature, 595(7867), 388–393. https://doi.org/10.1038/s41586-021-03629-6
Guo, X.-B., Drury, C. F., Yang, X., Reynolds, D., & Fan, R. (2014). The extent of soil drying and rewetting affects nitrous oxide emissions, denitrification, and nitrogen mineralization. Soil Science Society of America Journal, 78(1), 194–204. https://doi.org/10.2136/sssaj2013.06.0219
Horwath, W., & Kuzyakov, Y. (2018). The potential for soils to mitigate climate change through carbon sequestration. In Advances in agronomy (Vol. 150, pp. 185–230). Elsevier. https://doi.org/10.1016/B978-0-444-63865-6.00003-X
Hutchinson, G. L., & Mosier, A. R. (1981). Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Science Society of America Journal, 45(2), 311–316. https://doi.org/10.2136/sssaj1981.03615995004500020017x
Instituto Brasileiro de Geografia e Estatística. (2023). Produção agrícola municipal (PAM) 2023 e Levantamento sistemático da produção agrícola (LSPA). SIDRA/IBGE.
International Organization for Standardization. (2019). Soil quality — Guidelines for measurement of greenhouse gases from soils using chamber technique (ISO 20951:2019). https://www.iso.org/standard/69534.html
Intergovernmental Panel on Climate Change. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157896
Kirkby, R., Friedl, J., Takeda, N., & et al. (2023). Nonlinear response of N₂O and N₂ emissions to increasing soil nitrate availability in a tropical sugarcane soil. Journal of Soils and Sediments, 23(7), 2065–2071. https://doi.org/10.1007/s11368-023-03482-2
Kollah, B., Bakoriya, M., Dubey, G., & et al. (2020). Methane consumption potential of soybean-wheat, maize-wheat and maize-gram cropping systems under conventional and no-tillage agriculture in a tropical vertisol. The Journal of Agricultural Science, 158(1-2), 38–46. https://doi.org/10.1017/S0021859620000416
Krichels, A. H., Homyak, P. M., Aronson, E. L., Sickman, J. O., Botthoff, J., Shulman, H., Piper, S., & Andrews, H. M. (2022). Rapid nitrate reduction produces pulsed NO and N₂O emissions following wetting of dryland soils. Biogeochemistry, 158(2), 233–250. https://doi.org/10.1007/s10533-022-00896-x
Lage Filho, N. M., Cardoso, A. d. S., Azevedo, J. C. d., Faturi, C., da Silva, T. C., Domingues, F. N., Ruggieri, A. C., Reis, R. A., & do Rêgo, A. C. (2022). Land use, temperature, and nitrogen affect nitrous oxide emissions in Amazonian soils. Agronomy, 12(7), Article 1608. https://doi.org/10.3390/agronomy12071608
Lage Filho, N. M., Cardoso, A. S., Azevedo, J. C., & et al. (2023). How does land use change affect the methane emission of soil in the Eastern Amazon. Frontiers in Environmental Science, 11, Article 1244152. https://doi.org/10.3389/fenvs.2023.1244152
Lashermes, G., Recous, S., Alavoine, G., Janz, B., Butterbach-Bahl, K., Ernfors, M., & Laville, P. (2022). N₂O emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Science of the Total Environment, 806(Pt 4), Article 150883. https://doi.org/10.1016/j.scitotenv.2021.150883
Liu, X., Wu, X., Liang, G., Zheng, F., Zhang, M., & Li, S. (2021). A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degradation & Development, 32(18), 5292–5305. https://doi.org/10.1002/ldr.4109
Ma, L., & et al. (2020). In situ measurements and meta-analysis reveal land management controls on soil CH₄ uptake. Science of the Total Environment, 712, Article 136048. https://doi.org/10.1016/j.scitotenv.2019.136048
Ministério da Agricultura, Pecuária e Abastecimento. (2021). Plano setorial para adaptação à mudança do clima. MAPA.
Martins, M. dos S., & et al. (2021). Physical-hydraulic properties of the soil in areas with different land uses in the eastern Amazon region, Brazil. Revista Brasileira de Ciência do Solo, 45, Article e0200142.
Maucieri, C., Tolomio, M., McDaniel, M. D., Zhang, Y., Robatjazi, J., & Borin, M. (2021). No-tillage effects on soil CH₄ fluxes: A meta-analysis. Soil and Tillage Research, 212, Article 105042. https://doi.org/10.1016/j.still.2021.105042
Mehra, P., Baker, J., Sojka, R. E., Bolan, N., Desbiolles, J., Kirkham, M. B., Ross, C., Gupta, R., & et al. (2018). A review of tillage practices and their potential to impact the soil carbon dynamics. In Advances in agronomy (Vol. 150, pp. 185–230). Elsevier. https://doi.org/10.1016/bs.agron.2018.03.002
Monteiro, A., Barreto Mendes, L., Fanchone, A., Morgavi, D. P., Pedreira, B. C., Magalhães, C. A. S., Abdalla, A. L., & Eugène, M. (2024). Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Science of the Total Environment, 906, Article 167396. https://doi.org/10.1016/j.scitotenv.2023.167396
Mirzaei, M., Gorji Anari, M., Taghizadeh-Toosi, A., Zaman, M., Saronjic, N., Mohammed, S., Szabo, S., & Caballero-Calvo, A. (2022). Soil nitrous oxide emissions following crop residues management in corn-wheat rotation under conventional and no-tillage systems. Air, Soil and Water Research, 15(1). https://doi.org/10.1177/11786221221128789
Moraes, L. M., Lage Filho, N. M., Abreu, N. L., Ruggieri, A. C., Faturi, C., Silva, T. C., & Rêgo, A. C. (2025). Soil greenhouse gas emissions under different land uses in the Eastern Amazon. Revista Brasileira de Agroambiente, 19. https://doi.org/10.18227/1982-8470ragro.v19i00.8578
Nascimento, A. F., Rodrigues, R. A. R., Silveira, J. G., Silva, J. J. N., Daniel, V. C., & Segatto, E. R. (2020). Nitrous oxide emissions from a tropical Oxisol under monocultures and an integrated system in the Southern Amazon – Brazil. Revista Brasileira de Ciência do Solo, 44, Article e0190123. https://doi.org/10.36783/18069657rbcs20190123
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Geochemistry, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
Oliveira Junior, R. C., Keller, M., Crill, P., Beldini, T., van Haren, J., & Camargo, P. (2015). Trace gas fluxes from intensively managed rice and soybean fields across three growing seasons in the Brazilian Amazon. African Journal of Agricultural Research, 10(39), 3748–3758. https://doi.org/10.5897/AJAR2015.10241
Oliveira, A. D. de, Antonini, J. C. dos A., Santos, M. V. A. dos, Andrade, A. C. M. de, Malaquias, J. V., Carvalho, A. M. de, Muller, A. G., Delvico, F. M. d. S., Mendes, I. d. C., & Chagas, J. H. (2025). Sustainable irrigation management of winter wheat and effects on soil gas emissions (N₂O and CH₄) and enzymatic activity in the Brazilian Savannah. Sustainability, 17(17), Article 7734. https://doi.org/10.3390/su17177734
Osis, R., Laurent, F., & Poccard-Chapuis, R. (2019). Spatial determinants and future land use scenarios of Paragominas municipality, an old agricultural frontier in Amazonia. Journal of Land Use Science, 14(3), 258–279. https://doi.org/10.1080/1747423X.2019.1643422
Quesada, C. A., Paz, C., Oblitas Mendoza, E., Phillips, O. L., Saiz, G., & Lloyd, J. (2020). Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. SOIL, 6(1), 53–88. https://doi.org/10.5194/soil-6-53-2020
Rodrigues, T. E., Silva, R. das C., Silva, J. M. L. da, Oliveira Junior, R. C. de, Gama, J. R. N. F., & Valente, M. A. (2003). Caracterização e classificação dos solos do município de Paragominas, Estado do Pará (Documentos No. 162). Embrapa Amazônia Oriental. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/63746/1/Oriental-Doc162.PDF
Rubaiyat, A., Hossain, M. L., Kabir, M. H., Sarker, M. M. H., Salam, M. M. A., & Li, J. F. (2023). Dynamics of greenhouse gas fluxes and soil physico-chemical properties in agricultural and forest soils. Journal of Water and Climate Change, 14(10), 3791–3809. https://doi.org/10.2166/wcc.2023.338
Semenov, V. M., Lebedeva, T. N., Zinyakova, N. B., Khromychkina, D. P., Sokolov, D. A., Lopes de Gerenyu, V. O., Kravchenko, I. K., Li, H., & Semenov, M. V. (2022). Dependence of soil organic matter and plant residues decomposition on temperature and moisture in the long-term incubation experiments. Eurasian Soil Science, 55(7), 926–939. https://doi.org/10.1134/S1064229322070080
Shakoor, A., Shakoor, S., Rehman, Ashraf, F., Abdullah, M., Shahza, S. M., Farooq, T. H., Ashraf, M., Manzoor, M. A., Altaf, M. M., & Altaf, M. A. (2021). Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils - A global meta-analysis. Journal of Cleaner Production, 278, Article 124019. https://doi.org/10.1016/j.jclepro.2020.124019
Silva, E. V. da, & et al. (2013). O Projeto Saltus: Subsídios para a elaboração do inventário brasileiro de emissões antrópicas de gases de efeito estufa em sistemas florestais. In Anais do 18º Congresso Brasileiro de Agrometeorologia. Embrapa Amazônia Oriental.
Sousa, T. R., Ramos, M. L. G., Figueiredo, C. C., & Carvalho, A. M. (2021). N₂O emissions from soils under different uses in the Brazilian Cerrado - A review. Revista Brasileira de Ciência do Solo, 45, Article e0210093. https://doi.org/10.36783/18069657rbcs20210093
StatSoft Inc. (2004). STATISTICA (data analysis software system) (Version 7.0). Tulsa.
Syakila, A., & Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 1(1), 17–26. https://doi.org/10.3763/ghgmm.2010.0007
Tian, H., Xu, R., Canadell, J. G., & et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248–256. https://doi.org/10.1038/s41586-020-2780-0
Toteva, G. Y., Reay, D., Jones, M. R., Cowan, N., Deshpande, A., Weerakoon, B., Nissanka, S., & Drewer, J. (2024). Nitrous oxide and nitric oxide fluxes differ from tea plantation and tropical forest soils after nitrogen addition. Frontiers in Forests and Global Change, 7, Article 1335775. https://doi.org/10.3389/ffgc.2024.1335775
Tubielło, F. N., & et al. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), Article 015009. https://doi.org/10.1088/1748-9326/8/1/015009
Venturini, A. M., Dias, N. M. S., Gontijo, J. B., Yoshiura, C. A., Paula, F. S., Meyer, K. M., Nakamura, F. M., da França, A. G., Borges, C. D., Barlow, J., Berenguer, E., Nüsslein, K., Rodrigues, J. L. M., Bohannan, B. J. M., & Tsai, S. M. (2022). Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. Environmental Research, 212, Article 113139. https://doi.org/10.1016/j.envres.2022.113139
Vieira, I. C. G., Toledo, P. M., Melo, A. W. F., & Veríssimo, A. (2018). Deforestation, land use and environmental governance in Pará: Dynamics of agricultural expansion in eastern Amazonia. Land Use Policy, 76, 103–112. https://doi.org/10.1016/j.landusepol.2018.05.020
Wu, J., & et al. (2020). Asymmetric response of soil methane uptake rate to land degradation and restoration. Global Change Biology. https://doi.org/10.1111/gcb.15315
Xu, R., & et al. (2020). Global N₂O emissions from cropland driven by nitrogen inputs. Global Biogeochemical Cycles. https://doi.org/10.1029/2020GB006698
Yue, K., & et al. (2023). No-tillage decreases GHG emissions with no crop yield penalty: A meta-analysis. Agriculture, Ecosystems & Environment. https://doi.org/10.1016/j.still.2023.105643