INTRADAY VOLATILITY OF A STOCK INDEX: CONDITIONAL PERSISTENCE AND SPECTRAL DECOMPOSITION OF VARIANCE BY TIME SCALES
DOI:
https://doi.org/10.56238/revgeov17n2-018Keywords:
Intraday Volatility, GARCH, EGARCH, Spectral Decomposition, Temporal Scales, High-Frequency Data, Volatility PersistenceAbstract
This study investigates intraday volatility regularities and their distribution across temporal scales by combining conditional variance modeling with frequency-domain decomposition. A one-minute intraday time series is employed, collected between November 3 and December 12, 2025, standardized to the regular trading session (10:00–18:00), totaling 24 trading days with 481 observations per day after time validation and duplicate removal. Returns are computed as one-minute logarithmic differences. In the econometric stage, estimated models indicate high persistence and slightly superior informational adjustment, with no statistical evidence of sign-based asymmetry. In contrast, a statistically significant response to shock magnitude and elevated persistence in volatility dynamics are observed. Diagnostics on standardized residuals show no remaining autocorrelation in the standardized series, but suggest residual heteroskedasticity at intraday horizons of 20–60 minutes.In the spectral stage, the intraday variance distribution is estimated for each trading day in the frequency domain using a smoothed periodogram, after controlling for intraday patterns and mitigating extreme observations. Subsequently, relative power is computed for predefined periodicity bands (2–8, 8–16, 16–32, 32–64, and 64–128 minutes), with daily normalization. Results indicate a systematic predominance of fast components (2–8 minutes), with secondary and variable contributions at intermediate scales (8–32 minutes) and occasionally higher participation of slow scales (above 32 minutes).The findings suggest that, within the analyzed window, intraday risk is primarily concentrated in rapid fluctuations, while conditional modeling points to high persistence and responsiveness to shock magnitude, without sign asymmetry.
Downloads
References
ABDULAZIZ, A. I. et al. Does holidays affect the returns of stock markets prices? An application of some GARCH and Prophet models under varying error distributions. Internaconal Journal of Science for Global Sustainability, v. 10, n.4, p. 60, 2024. Disponível em: https://www.researchgate.net/ (buscar pelo título). Acesso em: 18 dez. 2025.
ADVANCED FINANCIAL NETWORK (ADVFN). Cotações intradiárias do IBOVESPA (1 minuto) — base de dados. Disponível em: https://br.advfn.com/. Acesso em: 18 dez. 2025.
ANDERSEN, T. G.; BOLLERSLEV, T. Intraday Periodicity and Volatility Persistence in Financial Markets (1997). ScienceDirect: https://www.sciencedirect.com/science/article/pii/S0927539897000042
ASEMOTA, O. J.; EKEJIUBA, U. C. An application of asymmetric GARCH models on volatility of banks equity in Nigeria’s stock market. CBN Journal of Applied Statistics, Abuja, v. 8, n. 1, p. 73–99, 2017. Disponível em: https://hrmars.com/. Acesso em: 18 dez. 2025.
AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, v. 19, n. 6, p. 716-723, 1974.
BANDI, F.; TAMONI, A. Spectral financial econometrics. VoxEU (CEPR), 2022. Disponível em: https://cepr.org/voxeu/ (buscar pelo título). Acesso em: 18 dez. 2025.
BARNDORFF-NIELSEN, O. E.; SHEPHARD, N. Power and Bipower Variation with Stochastic Volatility and Jumps (2004). OUP/JFEC: https://academic.oup.com/jfec/article/2/1/1/960705
BESTE, Christian; MÜNCHAU, Alexander; FRINGS, Christian. Towards a systematization of brain oscillatory activity in actions. Communications Biology, v. 6, art. 137, 2023. DOI: 10.1038/s42003-023-04531-9. Disponível em: https://www.nature.com/articles/s42003-023-04531-9. Acesso em: 19 dez. 2025.
BELZILE, L. Spectral density estimation. timeseRies, 2019. Disponível em: https://lbelzile.github.io/timeseRies/spectral-density-estimation.html. Acesso em: 26 dez. 2025.
BLACK, F. Studies of stock price volatility changes. In: AMERICAN STATISTICAL ASSOCIATION. Proceedings of the Business and Economic Statistics Section. [S.l.]: ASA, 1976. Disponível em: https://www.americanstatisticalassociation.org/. Acesso em: 18 dez. 2025.
BOLLERSLEV, T. zed autoregressive conditional heteroskedasticity. Journal of Econometrics, v. 31, n. 3, p. 307–327, 1986. DOI: https://doi.org/10.1016/0304-4076(86)90063-1. Acesso em: 18 dez. 2025.
BROCKWELL, P. J.; DAVIS, R. A. Time series: theory and methods. 2. ed. New York: Springer, 1991.
CHAUDHURI, S.; LO, A. W. Spectral analysis of stock-return volatility, correlation and beta. In: 2015 IEEE DSP/SPE. 2015. DOI: https://doi.org/10.1109/DSP-SPE.2015.7369558. Acesso em: 18 dez. 2025.
CRAN. rugarch: Univariate GARCH models. Comprehensive R Archive Network, 2025. Disponível em: https://cran.r-project.org/package=rugarch. Acesso em: 19 dez. 2025.
ENGLE, R. F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, v. 50, n. 4, p. 987–1007, 1982. DOI: https://doi.org/10.2307/1912773. Acesso em: 18 dez. 2025.
FIGLEWSKI, S.; WANG, X. Is the “leverage effect” a leverage effect? (Working paper), 2000. DOI/SSRN: https://doi.org/10.2139/ssrn.256109. Acesso em: 18 dez. 2025.
FRIMPONG, J. M.; OTENG-ABAYIE, E. F. Modelling and forecasting volatility of returns on the Ghana Stock Exchange using GARCH models. American Journal of Applied Sciences, v. 3, n. 10, p. 2042–2048, 2006. DOI: https://doi.org/10.3844/ajassp.2006.2042.2048. Acesso em: 18 dez. 2025.
GIL, A. C. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2008.
GRANGER, C. W. J.; WATSON, M. W. Time series and spectral methods in econometrics. In: GRILICHES, Z.; INTRILIGATOR, M. D. (ed.). Handbook of Econometrics. v. 2. Amsterdam: Elsevier, 1984.
GU, C. STAT 520: Spectral estimation. Purdue University, 2024. Notas de aula. Disponível em: https://www.stat.purdue.edu/~chong/stat520/ps/spec.pdf. Acesso em: 26 dez. 2025.
HERRMANN, C. S.; FRÜND, I.; LENZ, D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neuroscience & Biobehavioral Reviews, v. 34, n. 2, p. 981-992, 2010. DOI: https://doi.org/10.1016/j.neubiorev.2009.09.001. Acesso em: 18 dez. 2025.
HERRMANN, C. S.; MUNK, M; H. J.; ENGEL, A. K. Cognitive functions of gamma-band activity: memory match and utilization. Trends in Cognitive Sciences, v. 8, n. 8, p. 347-355, ago. 2004. DOI: 10.1016/j.tics.2004.06.006. Disponível em: https://neuro.bstu.by/ai/To-dom/My_research/Papers-2.1-done/Cognitive-S/Consciousness/D/Ref/Gamma-band/2/Herrmann04.pdf. Acesso em: 19 dez. 2025.
JOSEPH, A.; TURNER, C.; JEREMIAH, R. Comparative analyses of stock returns properties and predictability. Procedia Computer Science, v. 95, p. 272-280, 2016. DOI: 10.1016/j.procs.2016.09.333. Disponível em: https://www.sciencedirect.com/science/article/pii/S1877050916325066. Acesso em: 19 dez. 2025.
KANE, N. et al. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Clinical Neurophysiology Practice, v. 2, p. 170-185, 2017. DOI: https://doi.org/10.1016/j.cnp.2017.07.002. Acesso em: 18 dez. 2025.
KSCHISCHANG, F. R. The Wiener-Khinchin Theorem. Toronto: University of Toronto, The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 2017. Disponível em: https://www.comm.toronto.edu/frank/notes/wk.pdf. Acesso em: 19 dez. 2025
LAKATOS, E. M.; MARCONI, M. A. Fundamentos de metodologia científica. 5. ed. São Paulo: Atlas, 2003.
MALMSTEN, H. Evaluating exponential GARCH models. Stockholm: Stockholm School of Economics, 2004. (SSE/EFI Working Paper Series in Economics and Finance, n. 564). Disponível em: https://swopec.hhs.se/hastef/papers/hastef0564.pdf. Acesso em: 19 dez. 2025.
MARTINS, A. F. F.; BORTOLON, P. M.; MAIA, M. V. Relação entre índice de volatilidade implícita e índice de retorno de ações: evidências para o mercado acionário brasileiro. Revista Contemporânea de Contabilidade, v. 18, n. 49, p. 73–91, 2021. DOI: https://doi.org/10.5007/2175-8069.2021.e77707. Acesso em: 18 dez. 2025.
NELSON, D. B. Conditional heteroskedasticity in asset returns: a new approach. Econometrica, v. 59, n. 2, p. 347–370, 1991. https://doi.org/10.2307/2938260
NÉO, J. D. G.; RODRIGUES, R. O impacto da COVID-19 na volatilidade do Ibovespa: uma análise por modelos ARCH/GARCH. Revista de Economia Mackenzie, v. 22, n. 1, p. 162–190, 2025. Disponível em: https://www.researchgate.net. Acesso em: 18 dez. 2025.
GARCH, EGARCH e TGARCH. In: ANPEC SUL, 2024. Disponível em: https://www.anpec.org.br/sul/2024/submissao/files_I/i8-2d995feb37128b5db0053d205ebf9cd0.pdf. Acesso em: 18 dez. 2025.
PAN, Q. Changes in volatility leverage and spillover effects of crude oil futures markets. Journal of Commodity Markets, 2023. Disponível em: https://www.sciencedirect.com/ Acesso em: 18 dez. 2025.
PARREIRA, F. J . Detecção de crises epilépticas a partir de sinais eletroencefalográficos. 206. 185 p. Tese. (Doutorado) – Universidade Federal de Uberlândia, Uberlandia, 2006.
R (manual). spec.pgram. Disponível em: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/spec.pgram.html. Acesso em: 19 dez. 2025.
ROLL, R. A simple implicit measure of the effective bid–ask spread in an efficient market. The Journal of Finance, v. 39, n. 4, p. 1127–1139, 1984. DOI: https://doi.org/10.2307/2327617. Acesso em: 18 dez. 2025.
ROMANA, I. E. A spectral approach to stock market performance. arXiv, 2023. Disponível em: https://arxiv.org/pdf/2305.05762. Acesso em: 18 dez. 2025.
ROWELL, D. Non-Parametric Power Spectral Density Estimation. Lecture 23. In: MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Signal Processing: Continuous and Discrete (2.161). MIT OpenCourseWare, Fall 2008. Disponível em: https://ocw.mit.edu/courses/2-161-signal-processing-continuous-and-discrete-fall-2008/c7d1951d44fe78ea97d0e14ea5158aee_lecture_23.pdf. Acesso em: 19 dez. 2025.
SCHWARZ, G. Estimating the dimension of a model. The Annals of Statistics, v. 6, n. 2, p. 461-464, 1978.
STOICA, P.; MOSES, R. L. Spectral analysis of signals. Upper Saddle River: Prentice Hall, 2004.
THEILER, J. et al. Testing for nonlinearity in time series: the method of surrogate data (1992). ScienceDirect: https://www.sciencedirect.com/science/article/pii/016727899290102S
VARELA, F.; LACHAUX, J-P; RODRIGUEZ, E.; M, J. The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, v. 2, n. 4, p. 229-239, abr. 2001. DOI: 10.1038/35067550. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11283746/. Acesso em: 19 dez. 2025.
VERGARA, S. C. Métodos de pesquisa em administração. São Paulo: Atlas, 2005.
ZHANG, H. et al. The applied principles of EEG analysis methods in neuroscience and clinical neurology. 2023. PMCID: PMC10729551. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC10729551/. Acesso em: 18 dez. 2025.
ZHANG, Y. Spectral analysis of high-frequency finance. 2016. Tese (Doutorado) — Massachusetts Institute of Technology (MIT), Cambridge, 2016. Disponível em: https://dspace.mit.edu/bitstream/handle/1721.1/106399/967704353-MIT.pdf. Acesso em: 18 dez. 2025.