TEACHER TIMETABLING AND WORKLOAD ALLOCATION IN NEW SECONDARY EDUCATION SYSTEM

Authors

  • Paula Fernanda Gomes Vieira
  • Viviane Cristhyne Bini Conte
  • Paulo Henrique Siqueira
  • Andrea Sartori Jabur

DOI:

https://doi.org/10.56238/revgeov16n5-083

Keywords:

Timetabling, Mixed-Integer Linear Programming, Optimization, Brazilian New Secundary Education

Abstract

The Brazilian new secundary education reform (Law No. 13,415/2017) introduced curricular and structural transformations that significantly increased the complexity of teacher workload allocation. School administrators now confront interdependent challenges, including teacher availability, balanced distribution of operational workloads, commuting constraints, and limited physical infrastructure (e.g., “classrooms,” “laboratories,” “IT infrastructure”) within a more flexible curriculum. Teacher timetabling is a classical NP-hard problem in Operations Research, and Mixed-Integer Linear Programming (MILP) provides a rigorous framework to model such interdependent constraints. This study proposes and implements an MILP optimization model for teacher workload allocation in a large public secundary educationin São José dos Pinhais, Paraná, Brazil. The real-world instance included 49 teachers and 19 classes, totaling 745 weekly hours. The formulation explicitly incorporates institutional constraints—such as daily workload limits, asynchronous class integration, and the shared-resource restriction for Physical Education—as well as teacher preferences regarding paired lessons and activity hours (HA) grouping. The model, implemented in Julia (JuMP) and solved with the Gurobi Optimizer, achieved an exact optimal solution in approximately 35 seconds. The optimization resulted in reducing one teacher’s weekly presence by a full day while maintaining the same number of working days for others. Furthermore, it eliminated the need for manual scheduling adjustments, automatically ensuring consistent allocation of asynchronous lessons and the non-overlapping use of the school’s sports court. By combining operational efficiency with adherence to teacher preferences, the proposed MILP formulation proved to be computationally tractable and applicable to real educational contexts. The model serves as a decision-support tool that enhances school organization and improves the overall management of teaching schedules.

Downloads

Download data is not yet available.

References

Beanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). The Julia programming language. SIAM Review, 59(1), 65–98.

Brasil. (1996). Lei n.º 9.394, de 20 de dezembro de 1996. Estabelece as diretrizes e bases da educação nacional. Diário Oficial da União: seção 1.

Brasil. (2017). Lei n.º 13.415, de 16 de fevereiro de 2017. Altera as Leis n. 9.394, de 20 de dezembro de 1996, que estabelece as diretrizes e bases da educação nacional... e dá outras providências. Diário Oficial da União: seção 1.

Brasil. Ministério da Educação. (2017). Portaria n.º 1.570, de 20 de dezembro de 2017. Dispõe sobre o cronograma de implementação do Novo Ensino Médio. Diário Oficial da União: seção 1.

Codes, A. L. M., Fonseca, S. L. D., & Araújo, H. E. (2021). Ensino Médio: Contexto e Reforma. Afinal, do que se trata? IPEA.

Fonseca, G. H. G., Santos, H. G., Carrano, E. G., & Stidsen, T. J. R. (2017). Integer programming techniques for educational timetabling. European Journal of Operational Research, 262(1), 28–39.

**Góes, A. R. T., Costa, D. M. B., & Steiner, M. T. A. (2010). Otimização na programação de horários de professores/turmas: Modelo matemático, abordagem heurística e método misto. Sistemas & Gestão, 5(1), 50–66. https://doi.org/10.7177/sg.2010.v5.n1.a4

Gu, X., Krish, M., Sohail, S., Thakur, S., Sabrina, F., & Fan, Z. (2025). From integer programming to machine learning: A technical review on solving university timetabling problems. Computation, 13(1).

**Instituto Brasileiro de Geografia e Estatística. (s.d.). Cidades e Estados: São José dos Pinhais. https://cidades.ibge.gov.br/

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2024). Resumo técnico — Censo Escolar 2024. INEP.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.

Vieira, P. F. G., Conte, V. C. B., & Siqueira, P. H. (2024). Aplicação da programação linear na alocação de aulas: Um estudo de caso no Novo Ensino Médio do Paraná. Caderno Pedagógico, 21(5), e4319.

Downloads

Published

2025-10-29

How to Cite

Vieira, P. F. G., Conte, V. C. B., Siqueira, P. H., & Jabur, A. S. (2025). TEACHER TIMETABLING AND WORKLOAD ALLOCATION IN NEW SECONDARY EDUCATION SYSTEM. Revista De Geopolítica, 16(5), e869. https://doi.org/10.56238/revgeov16n5-083