MORDEDURA DE SERPIENTE: IMPORTANCIA DEL DIAGNÓSTICO Y TRATAMIENTO INMEDIATO
DOI:
https://doi.org/10.56238/revgeov16n5-086Palabras clave:
Antídoto, Enfermedad Tropical Desatendida, Epidemiología, Vulnerabilidad, EnvenenamientoResumen
Las mordeduras de serpiente afectan a unos tres millones de personas al año en todo el mundo. Se trata de un fenómeno ecológico, social y económico, y una enfermedad tropical desatendida que afecta a los países tropicales y subtropicales, a las poblaciones pobres y rurales, con acceso limitado a los servicios de salud y antídotos, lo que hace que la morbilidad y la mortalidad se tengan en cuenta en las políticas públicas y los acuerdos internacionales mediados por la Organización Mundial de la Salud. El objetivo de este estudio es presentar una revisión sobre la importancia del diagnóstico y el tratamiento inmediatos de las mordeduras de serpiente. La falta de atención a este problema de salud pública y las crisis en la producción de antídotos han dejado a millones de personas vulnerables, con menos posibilidades de recibir tratamiento. La subnotificación, la escasez de estudios epidemiológicos, las ineficiencias en la producción, los escasos incentivos para la innovación o la inversión en nuevos procesos tecnológicos, la demanda inadecuada del mercado, los bajos volúmenes de fabricación, las limitaciones de almacenamiento, los problemas de distribución y la financiación inadecuada para las adquisiciones, así como la formación deficiente de los profesionales de la salud, se reflejan en el riesgo de colapso en muchas partes del mundo. Es necesario fomentar las inversiones en políticas públicas para atender a las poblaciones vulnerables, promover la formación continua de los profesionales sanitarios y las comunidades vulnerables, prestando especial atención a esta enfermedad.
Descargas
Referencias
1. Matos, R. R., & Ignotti, E. (2020). Incidence of venomous snakebite accidents by snake species in brazilian biomes. Ciencia e Saude Coletiva, 25, 2837–2846.
2. Asega, A. F., [et al.]. (2020). Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep, 10.
3. Pejak, D. T., Adam, V. N., & Srzić, I. (2022). VENOMOUS SNAKEBITES IN CROATIA, CLINICAL PRESENTATION, DIAGNOSIS AND TREATMENT. Acta Clin Croat, 61, 59–66.
4. Qamruddin, R. M., [et al.]. (2023). Frequency, geographical distribution and outcomes of pit viper bites in Malaysia consulted to Remote Envenomation Consultancy Services (RECS) from 2017 to 2020. PLoS Negl Trop Dis, 17.
5. Gutiérrez, J. M., [et al.]. (2017). Snakebite envenoming. Nat Rev Dis Primers, 3, 1–21.
6. Amorim, A. P. da C. F. de, Santos, M. F. dos, Schneider, M. C., Nouér, S. A., & Igreja, R. P. (2025). Snakebite antivenom treatment, current situation, and challenges in brazil and other high -burden countries. Revista Aracê, 7, 1–36.
7. Gutiérrez, J. M. (2020). Snakebite envenoming from an Ecohealth perspective. Toxicon X, 7.
8. Chippaux, J. P., Massougbodji, A., & Habib, A. G. (2019). The WHO strategy for prevention and control of snakebite envenoming: A sub-Saharan Africa plan. Journal of Venomous Animals and Toxins Including Tropical Diseases, 25.
9. WHO. (2018). Addressing the burden of snakebite envenoming. 17, 24–26.
10. Patikorn, C., [et al.]. (2022). Situation of snakebite, antivenom market and access to antivenoms in ASEAN countries. BMJ Glob Health, 7, 25.
11. Erickson, L. T., [et al.]. (2020). The ‘Snake song’: A pilot study of musical interventin in Eswatini. Rural Remote Health, 20, 1–14.
12. Castro-Amorim, J., [et al.]. (2023). Catalytically Active Snake Venom PLA2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J Med Chem, 66, 5364–5376.
13. Schneider, M. C., [et al.]. (2021). Overview of snakebite in brazil: Possible drivers and a tool for risk mapping. PLoS Negl Trop Dis, 15, 1–18.
14. Silva, L. M. G., [et al.]. (2024). Photobiomodulation mitigates Bothrops jararacussu venom-induced damage in myoblast cells by enhancing myogenic factors and reducing cytokine production. PLoS Negl Trop Dis, 18, e0012227.
15. WHO. (2025). Envenenamento por picada de cobra - Uma estratégia para prevenção e controle. https://www.who.int/publications/i/item/9789241515641
16. Abdullahi, S. A., Habib, A. G., & Hussaini, N. (2021). Control of snakebite envenoming: A mathematical modeling study. PLoS Negl Trop Dis, 15.
17. Oliveira, R. A. D. de, Silva, D. R. X., & e Silva, M. G. (2022). Geographical accessibility to the supply of antiophidic sera in Brazil: Timely access possibilities. PLoS One, 17.
18. Longbottom, J., [et al.]. (2018). Vulnerability to snakebite envenoming: a global mapping of hotspots. The Lancet, 392, 673–684.
19. Habibid, A. G., [et al.]. (2020). Challenges and prospects of snake antivenom supply in Sub-Saharan Africa. PLoS Negl Trop Dis, 14, 1–10.
20. Gajbhiye, R. K., [et al.]. (2023). National snakebite project on capacity building of health system on prevention and management of snakebite envenoming including its complications in selected districts of Maharashtra and Odisha in India: A study protocol. PLoS One, 18.
21. Soopairin, S., Patikorn, C., & Taychakhoonavudh, S. (2023). Antivenom preclinical efficacy testing against Asian snakes and their availability in Asia: A systematic review. PLoS One, 18.
22. Oliveira, N. da R., Silva, T. M., Sousa, A. C. da R., & Ferreira, K. K. da S. (2022). EPIDEMIOLOGIA DE ACIDENTES OFÍDICOS NO BRASIL (2000-2018). [Preprint]. https://editorarealize.com.br/editora/anais/conapesc/2022/TRABALHO_COMPLETO_EV177_MD1_ID1089_TB433_10082022145016.pdf
23. Amorim, A. P. da C. F. de, & Santos, M. F. dos. (2021). OFIDISMO: DOENÇA TROPICAL NEGLIGENCIADA DE GRANDE IMPACTO NA SAÚDE MUNDIAL. In Giselle Medeiros da Costa One & (Org.) (Eds.), SAÚDE: Os desafios da pesquisa na atualidade (Vol. 1, pp. 421–443). João Pessoa - PB.
24. CAPES. (2025). Portal periodicos CAPES. https://www.periodicos.capes.gov.br/
25. WHO. (2025). Snakebite. https://www.who.int/health-topics/snakebite#tab=tab_1
26. OPAS. (2025). Organização Pan-Americana de Saúde. https://www.paho.org/pt
27. BRASIL, Ministério da Saúde. (2025). Acidentes por Animais Peçonhentos — Ministério da Saúde. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/animais-peconhentos
28. IVB. (2025). Instituto Vital Brazil - IVB. https://www.rj.gov.br/vitalbrazil/
29. Butantan. (2025). Instituto Butantan. https://butantan.gov.br/
30. African Snakebite Institute. (2025). African Snakebite Institute. https://www.africansnakebiteinstitute.com/
31. Cavalcante, J. dos S., [et al.]. (2023). Challenges and Opportunities in Clinical Diagnostic Routine of Envenomation Using Blood Plasma Proteomics. Toxins, 15. https://doi.org/10.3390/toxins15030180
32. Mikaelle Costa, E. M. X. Freire, & R. Campos. (2020). SERPENTES DA CAATINGA: PREVENIR. SIM; MATAR, NAO! (pp. 15–38). https://labherpeto.cb.ufrn.br/pdf/manual.pdf
33. Huang, Y. K., [et al.]. (2022). Cerebral Complications of Snakebite Envenoming: Case Studies. Toxins, 14, 436. https://doi.org/10.3390/toxins14070436
34. Filho, G. A. P., Vieira, W. L. S., & França, F. G. R. (2020). Serpentes de Importância Médica No Brasil.
35. OMS. (2025). Snakebite Data Information Portal - Production. https://snbdatainfo.who.int/
36. Bhaumik, S., Norton, R., & Jagnoor, J. (2023). Structural capacity and continuum of snakebite care in the primary health care system in India: a cross-sectional assessment. BMC Primary Care, 24.
37. Knudsen, C., [et al.]. (2021). Snakebite Envenoming Diagnosis and Diagnostics. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.661457
38. Jenkins, T. P., [et al.]. (2021). Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the middle east and North Africa. PLoS Neglected Tropical Diseases, 15. https://doi.org/10.1371/journal.pntd.0009880
39. Alfred, S., [et al.]. (2019). Acute Kidney Injury Following Eastern Russell’s Viper (Daboia siamensis) Snakebite in Myanmar. Kidney Int Rep, 4, 1337–1341.
40. Lu, H. Y., [et al.]. (2023). Clinical predictors of early surgical intervention in patients with venomous snakebites. Eur J Med Res, 28, 131.
41. Gilliam, L. L., [et al.]. (2023). Oral and IV Varespladib Rescue Experiments in Juvenile Pigs with Weakness Induced by Australian and Papuan Oxyuranus scutellatus Venoms. Toxins (Basel), 15.
42. Sanhajariya, S., Duffull, S. B., & Isbister, G. K. (2021). Investigating myotoxicity following Australian red-bellied black snake (Pseudechis porphyriacus) envenomation. PLoS One, 16.
43. Resiere, D., [et al.]. (2023). Bothrops (Fer-de-lance) snakebites in the french departments of the americas (martinique and guyana): Clinical and experimental studies and treatment by immunotherapy. PLoS Neglected Tropical Diseases, 17. https://doi.org/10.1371/journal.pntd.0011083
44. Silva, W. D. da, [et al.]. (2022). Antibodies as Snakebite Antivenoms: Past and Future. Toxins, 14. https://doi.org/10.3390/toxins14090606
45. Castro, K. L. P. de, [et al.]. (2019). A combined strategy to improve the development of a coral antivenom against micrurus spp. Front Immunol, 10, 2422.
46. Ribeiro, T. B. B., Santos, F. H. dos, Pacheco, D. da S., Silva, A. C. C. M., & Gonçalves, E. A. (2019). Acidentes com serpentes peçonhentas em Anápolis: uma análise de dados de 2012 a 2019. RESU–Revista Educação em Saúde, 7.
47. Roriz, K. R. P. S., [et al.]. (2018). Epidemiological study of snakebite cases in Brazilian western Amazonia. Rev Soc Bras Med Trop, 51, 338–346.
48. Ministério da Saúde. (2025). Portal SINAN. https://portalsinan.saude.gov.br/
49. Ministério da Saúde. (2021). DATASUS - Ministério da Saúde. https://datasus.saude.gov.br/
50. Câmara, O. F., [et al.]. (2020). Ophidian envenomings in a region of Brazilian western Amazon. Journal of Human Growth and Development, 30, 120–128.
51. Melo, P. A., & Maqui, O. N. C. (2020). ASPECTOS EPIDEMIOLÓGICOS DE ACIDENTES OFÍDICOS REGISTRADOS NO ESTADO DO ACRE, BRASIL, ENTRE 2013-2017: UM ESTUDO ECOLÓGICO. Hygeia - Revista Brasileira de Geografia Médica e da Saúde, 16, 174–187.
52. Oliveira, L. P. de, [et al.]. (2020). Snakebites in rio branco and surrounding region, acre, western brazilian amazon. Rev Soc Bras Med Trop, 53, 1–8.
53. Ministério da Saúde. (2024). Guia De Animais Peçonhentos Do Brasil. Ministério da Saúde - Secretaria de Vigilância em Saúde e Ambiente - Departamento de Doenças Transmissíveis.
54. Schneider, M. C., [et al.]. (2021). Snakebites in rural areas of Brazil by race: indigenous the most exposed group. Int J Environ Res Public Res, 18.
55. Almeida, G. de O., Oliveira, I. S. de, Arantes, E. C., & Sampaio, S. V. (2023). Snake venom disintegrins update: insights about new findings. Journal of Venomous Animals and Toxins Including Tropical Diseases, 29, 1–17.
56. França, F. S. de, & Tambourgi, D. V. (2023). Hyaluronan breakdown by snake venom hyaluronidases: From toxins delivery to immunopathology. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1125899
57. Hammer, F. M., Feio, R. N., & Siqueira-Batista, R. (2022). Acidentes crotálicos no Brasil: atualidades e perspectivas. Revista Médica de Minas Gerais, 32, 1–13.
58. Osipov, A., & Utkin, Y. (2023). What Are the Neurotoxins in Hemotoxic Snake Venoms? International Journal of Molecular Sciences, 24. https://doi.org/10.3390/ijms24032919
59. Casewell, N. R., Jackson, T. N. W., Laustsen, A. H., & Sunagar, K. (2020). Causes and Consequences of Snake Venom Variation. Trends in Pharmacological Sciences, 41, 570–581. https://doi.org/10.1016/j.tips.2020.05.006
60. Coutinho, J. V. S. C., Fraga Guimarães, T., Borges Valente, B., & Gomes Martins de Moura Tomich, L. (2023). Epidemiology of secondary infection after snakebites in center-west Brazil. PLoS Negl Trop Dis, 17, e0011167.
61. Amorim, A. P. da C. F. de, [et al.]. (2025). SEASONALITY OF SNAKEBITES: STUDY FROM 2008 TO 2017 IN THE MUNICIPALITY OF RIO DE JANEIRO, BRAZIL. ARACÊ, 7, e8435.
62. AI. (2025). Perplexity. http://www.perplexity.ai/academic
63. AI. (2025). Lovart. http://www.lovart.ai/
64. Igawe, P. B., [et al.]. (2020). Snakebite outbreak and associated risk factors in Donga, Taraba State, Nigeria, June, 2016. Pan African Medical Journal, 37, 1–8.
65. Afroz, A., Siddiquea, B. N., Shetty, A. N., Jackson, T. N. W., & Watt, A. D. (2023). Assessing knowledge and awareness regarding snakebite and management of snakebite envenoming in healthcare workers and the general population: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 17. https://doi.org/10.1371/journal.pntd.0011048
66. Hardcastle, T. C., Kajee, M., Lachenicht, K., & van der Walt, N. (2023). Approach to the diagnosis and management of snakebite envenomation in South Africa in humans: Layperson aspects and the role of emergency medical services. South African Medical Journal, 113, 1190–1194.
67. da Silva, W. R. G. B., [et al.]. (2023). Who are the most affected by Bothrops snakebite envenoming in Brazil? A Clinical-epidemiological profile study among the regions of the country. PLoS Negl Trop Dis, 17, e0011708.
68. Tednes, M., & Slesinger, T. L. (2021). Evaluation and Treatment of Snake Envenomations. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK553151/
69. Zhang, J., Chen, X., Song, A., & Li, X. (2023). Artificial intelligence-based snakebite identification using snake images, snakebite wound images, and other modalities of information: A systematic review. International Journal of Medical Informatics, 173, 105024. https://doi.org/10.1016/j.ijmedinf.2023.105024
70. Russell, J. J., Schoenbrunner, A., & Janis, J. E. (2021). Snake Bite Management: A Scoping Review of the Literature. Plastic and Reconstructive Surgery - Global Open, 9, e3506. https://doi.org/10.1097/GOX.0000000000003506
71. Abdullahi, A., [et al.]. (2022). Seasonal variation, treatment outcome, and its associated factors among the snakebite patients in Somali region, Ethiopia. Front Public Health, 10.
72. Gutiérrez, J. M., [et al.]. (2018). Why is skeletal muscle regeneration impaired after myonecrosis induced by viperid snake venoms? Toxins, 10. https://doi.org/10.3390/toxins10050182
73. Chippaux, J. P. (2017). Snakebite envenomation turns again into a neglected tropical disease! Journal of Venomous Animals and Toxins Including Tropical Diseases, 23. https://doi.org/10.1186/s40409-017-0127-6
74. Habib, A. G., & Brown, N. I. (2018). O problema da picada de cobra e a crise do antiveneno numa perspectiva económica da saúde. Tóxico, 150, 115–123.
75. Isbister, G. K. (2023). Antivenom availability, delays and use in Australia. Toxicon X, 17, 100145.
76. Souza, L. A. de, Silva, A. D., Chavaglia, S. R. R., Dutra, C. M., & Ferreira, L. A. (2021). Profile of snakebite victims reported in a public teaching hospital: A cross-sectional study. Revista da Escola de Enfermagem, 55, 1–7.
77. Kaur, N., Iyer, A., & Sunagar, K. (2021). Evolution Bites — Timeworn Inefficacious Snakebite Therapy in the Era of Recombinant Vaccines. Indian Pediatr, 58, 219–223.
78. Williams, D. J., [et al.]. (2019). Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis, 13, 1/12.
79. Isaacson, J. E., [et al.]. (2023). Antivenom access impacts severity of Brazilian snakebite envenoming: A geographic information system analysis. PLoS Negl Trop Dis, 17, 1/19.
80. Williams, H. F., [et al.]. (2019). The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins, 11. https://doi.org/10.3390/toxins11060363
81. Potet, J., [et al.]. (2021). Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon X, 12, 100086.
82. Bala, A. A., [et al.]. (2021). Knowledge assessment of anti-snake venom among healthcare practitioners in northern Nigeria. Ther Adv Infect Dis, 8.
83. Iddi, S., Justin, J., Hamasaki, K., Konje, E. T., & Kongola, G. W. (2022). Assessment of snakebite management practices at Meserani Juu in Monduli District, Northern Tanzania. PLoS One, 17, e0278940.
84. Potet, K., [et al.]. (2023). Snakebite envenoming at MSF: A decade of clinical challenges and antivenom access issues. Toxicon X, 17.
85. Gajbhiye, R. K., Munshi, H., & Bawaskar, H. S. (2023). National programme for prevention & control of snakebite in India: Key challenges & recommendations Snakebite. Indian Journal of Medical Research, 157, 271–275. https://doi.org/10.4103/ijmr.ijmr_2424_22
86. Tan, C. H., Bourges, A., & Tan, K. Y. (2021). King Cobra and snakebite envenomation: On the natural history, human-snake relationship and medical importance of Ophiophagus hannah. Journal of Venomous Animals and Toxins Including Tropical Diseases, 27, e20251. https://doi.org/10.1590/1678-9199-JVATITD-2021-0051
87. Zimmerman, A., [et al.]. (2024). Scaling up antivenom for snakebite envenoming in the Brazilian Amazon: a cost-effectiveness analysis. The Lancet Regional Health - Americas, 29.
88. Funasa. (2001). Manual de Diagnóstico e Tratamento de Acidentes Por Animais Peçonhentos. Fundação Nacional de Saúde (Ministério da Saúde). https://doi.org/10.22278/2318-2660.1996.v1.n2.a1256
89. Farias, A. S. de, [et al.]. (2023). Snakebite envenomations and access to treatment in communities of two indigenous areas of the Western Brazilian Amazon: A cross-sectional study. PLoS Negl Trop Dis, 17.
90. Bernarde, P. S., Wen, F. H., & Monteiro, W. M. (2021). The risk of exotic venomous snakes to public health in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 54. https://doi.org/10.1590/0037-8682-0585-2020
91. de Farias, A. S., [et al.]. (2023). Building an explanatory model for snakebite envenoming care in the Brazilian Amazon from the indigenous caregivers’ perspective. PLoS Negl Trop Dis, 17, e0011172.
92. Darshani, S., Gnanathasan, A., Arambepola, C., & Chang, T. (2021). Knowledge on prevention, diagnosis and treatment of snakebite envenoming among doctors in snakebite-dense regions in Sri Lanka. Trans R Soc Trop Med Hyg, 115, 984–991.
93. Basnyat, B., & Shilpakar, O. (2022). Snakebite envenoming: a hidden health crisis. Lancet Glob Health, 10, e311–e312.
94. Waiddyanatha, S., Silva, A., Siribaddana, S., & Isbister, G. K. (2019). Long-term effects of snake envenoming. Toxins (Basel), 11.