STAPHYLOCOCCUS SPP. COMENSAIS DE CÃES E GATOS COMO RESERVATÓRIOS DE GENES DE RESISTÊNCIA ANTIMICROBIANA NO NORDESTE DO BRASIL: UM ESTUDO PRELIMINAR
DOI:
https://doi.org/10.56238/revgeov16n5-152Palavras-chave:
Staphylococcus spp, Animais de Companhia, Genes de Resistência, Saúde ÚnicaResumo
A resistência antimicrobiana (RAM) em micro-organismos comensais de animais de companhia representa um desafio crescente no contexto de Saúde Única (One Health), uma vez que a convivência próxima entre pets e humanos favorece a circulação e a persistência de genes de resistência entre espécies. Este estudo teve como objetivo caracterizar isolados de Staphylococcus spp. provenientes da orofaringe de cães e gatos atendidos em clínicas veterinárias da Região Metropolitana do Recife, Pernambuco, com foco nos perfis fenotípico e genotípico de resistência antimicrobiana. Amostras orofaríngeas de 20 animais (13 cães e 7 gatos) foram cultivadas em Ágar Sal Manitol, e os isolados foram identificados por espectrometria de massa MALDI-TOF. A susceptibilidade antimicrobiana foi avaliada pelo método de difusão em disco, e os genes de resistência foram pesquisados por PCR. Foram identificados onze isolados de Staphylococcus, incluindo S. aureus (n=2), S. felis (n=2), S. sciuri (n=2), S. warneri (n=2), S. haemolyticus (n=1), S. nepalensis (n=1) e S. simulans (n=1). A resistência à eritromicina foi predominante (6/11; 54,5%), e todos os isolados resistentes apresentaram resistência induzível à clindamicina (teste D positivo). Foram detectados os genes blaZ, norA, norC e tet(38), enquanto mecA e mecC estavam ausentes. Os resultados demonstram a diversidade genética de Staphylococcus spp. colonizando a orofaringe de cães e gatos e revelam a circulação silenciosa de determinantes de resistência antimicrobiana em animais de companhia. Esses achados reforçam a necessidade de vigilância integrada de RAM, conectando os setores de saúde humana, animal e ambiental para prevenir a disseminação da resistência no âmbito da Saúde Única.
Downloads
Referências
Abdullahi, I. N., & et al. (2022). Nasal Staphylococcus aureus and S. pseudintermedius carriage in healthy dogs and cats: A systematic review of their antibiotic resistance, virulence and genetic lineages of zoonotic relevance. Journal of Applied Microbiology, 133(6), 3368–3390. https://doi.org/10.1093/jambio/lxac062
Alcântara, L. P., & et al. (2023). Antimicrobial susceptibility of Staphylococcus spp. isolated from felids and canids in Belo Horizonte Zoo, Brazil. Journal of Zoo and Wildlife Medicine, 54(3), 575–582. https://doi.org/10.1638/2022-0128
Bello-López, J. M., Cabrera-Maldonado, C., & Castro-Escarpulli, G. (2019). Transferência horizontal de genes e sua associação com a resistência a antibióticos no gênero Aeromonas. Revista Latinoamericana de Microbiología, 60(1), 34–41. https://doi.org/10.26749/rlm.2019.60.1.5
Burke, M., & Santoro, D. (2023). Prevalence of multidrug-resistant coagulase-positive staphylococci in canine and feline dermatological patients over a 10-year period: A retrospective study. Microbiology, 169(2), 1–14. https://doi.org/10.1099/mic.0.001392
Caddey, B., & et al. (2025). Companions in antimicrobial resistance: Examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clinical Microbiology Reviews, 38(1), Article e00146-22. https://doi.org/10.1128/cmr.00146-22
Clark, A. E., Kaleta, E. J., Arora, A., & Wolk, D. M. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clinical Microbiology Reviews, 26(3), 547–603. https://doi.org/10.1128/CMR.00072-12
Clinical and Laboratory Standards Institute. (2020). Performance standards for antimicrobial susceptibility testing (29th ed., CLSI supplement M100). https://clsi.org/media/3486/clsi_astnewsupdate_january2020.pdf
Delialioglu, N., & et al. (2005). Inducible clindamycin resistance in staphylococci isolated from clinical samples. Journal of Antimicrobial Chemotherapy, 55(4), 479–481. https://doi.org/10.1093/jac/dki024
Fan, H. H., Kleven, S. H., & Jackwood, M. W. (1995). Application of polymerase chain reaction with arbitrary primers to strain identification of Mycoplasma gallisepticum. Avian Diseases, 39(4), 729–735.
Guardabassi, L. (2016). Antibiotic resistance in companion animals. Veterinary Microbiology, 187, 3–9. https://doi.org/10.1016/j.vetmic.2016.03.007
Guo, D., & et al. (2023). Staphylococcus aureus infections in companion animals: A global perspective. Journal of Clinical Microbiology, 61(2), Article e01457-22. https://doi.org/10.1128/jcm.01457-22
Lax, S., & et al. (2014). Longitudinal analysis of microbial interactions in the built environment. Science Advances, 1(1), Article e1400329. https://doi.org/10.1126/sciadv.1400329
Leite, D. P. S. B. M., & et al. (2023). Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment. Brazilian Journal of Microbiology, 54, 209–219. https://doi.org/10.1007/s42770-022-00856-0
Marco-Fuertes, A., & et al. (2024). Multidrug-resistant commensal and infection-causing Staphylococcus spp. isolated from companion animals in the Valencia region. Veterinary Sciences, 11(2), Article 3554. https://doi.org/10.3390/vetsci11020355
Nakagawa, S., & et al. (2005). Gene sequences and specific detection for Panton-Valentine leukocidin. Biochemical and Biophysical Research Communications, 328(3), 965–970. https://doi.org/10.1016/j.bbrc.2005.01.054
Nocera, F. P., & et al. (2021). On Gram-positive- and Gram-negative-bacteria-associated canine and feline skin infections: A 4-year retrospective study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals, 11(6), Article 1603. https://doi.org/10.3390/ani11061603
O’Neill, J. (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
Paterson, G. K., & et al. (2012). The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy, 67(12), 2809–2813. https://doi.org/10.1093/jac/dks329
Phumthanakorn, N., & et al. (2022). Frequency, distribution, and antimicrobial resistance of coagulase-negative staphylococci isolated from clinical samples in dogs and cats. Microbial Drug Resistance, 28(2), 236–243. https://doi.org/10.1089/mdr.2021.0275
Sampaio, J. R. (1995). Estatística aplicada à pesquisa (2a ed.). Pioneira.
Sawant, A., Gillespie, B., & Oliver, S. (2009). Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Veterinary Microbiology, 134(1–2), 73–81. https://doi.org/10.1016/j.vetmic.2008.09.006
Souza, T. G. V., & et al. (2024). Occurrence, genetic diversity, and antimicrobial resistance of methicillin-resistant Staphylococcus spp. in hospitalized and non-hospitalized cats in Brazil. PLoS ONE, 19(3), Article e0283320. https://doi.org/10.1371/journal.pone.0283320
Truong-Bolduc, Q. C., Zhang, X., & Hooper, D. C. (2003). Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. Journal of Bacteriology, 185(10), 3127–3138. https://doi.org/10.1128/JB.185.10.3127-3138.2003
Truong-Bolduc, Q. C., & et al. (2005). MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. Journal of Bacteriology, 187(7), 2395–2405. https://doi.org/10.1128/JB.187.7.2395-2405.2005
Truong-Bolduc, Q. C., Strahilevitz, J., & Hooper, D. C. (2006). NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(3), 1104–1107. https://doi.org/10.1128/AAC.50.3.1104-1107.2006
World Health Organization. (2021). Global action plan on antimicrobial resistance. World Health Organization.