STAPHYLOCOCCUS SPP. COMENSALES DE PERROS Y GATOS COMO RESERVORIOS DE GENES DE RESISTENCIA ANTIMICROBIANA EN EL NORESTE DE BRASIL: UN ESTUDIO PRELIMINAR
DOI:
https://doi.org/10.56238/revgeov16n5-152Palabras clave:
Staphylococcus spp, Animales de Compañía, Genes de Resistencia, Salud ÚnicaResumen
La resistencia antimicrobiana (RAM) en microorganismos comensales de animales de compañía representa un desafío creciente en el contexto de Salud Única (One Health), dado que la convivencia cercana entre mascotas y humanos favorece la circulación y persistencia de genes de resistencia entre especies. Este estudio tuvo como objetivo caracterizar aislados de Staphylococcus spp. provenientes de la orofaringe de perros y gatos atendidos en clínicas veterinarias de la Región Metropolitana de Recife, Pernambuco, con enfoque en los perfiles fenotípico y genotípico de resistencia antimicrobiana. Se cultivaron muestras orofaríngeas de 20 animales (13 perros y 7 gatos) en Ágar Sal Manitol, y los aislados fueron identificados mediante espectrometría de masa MALDI-TOF. La susceptibilidad antimicrobiana se evaluó por el método de difusión en disco, y los genes de resistencia se investigaron por PCR. Se identificaron once aislados de Staphylococcus, incluyendo S. aureus (n=2), S. felis (n=2), S. sciuri (n=2), S. warneri (n=2), S. haemolyticus (n=1), S. nepalensis (n=1) y S. simulans (n=1). La resistencia a la eritromicina fue predominante (6/11; 54,5%), y todos los aislados resistentes presentaron resistencia inducible a la clindamicina (test D positivo). Se detectaron los genes blaZ, norA, norC y tet(38), mientras que mecA y mecC estuvieron ausentes.Los resultados demuestran la diversidad genética de Staphylococcus spp. colonizando la orofaringe de perros y gatos y revelan la circulación silenciosa de determinantes de resistencia antimicrobiana en animales de compañía. Estos hallazgos refuerzan la necesidad de vigilancia integrada de RAM, conectando los sectores de salud humana, animal y ambiental para prevenir la diseminación de la resistencia en el ámbito de la Salud Única.
Descargas
Referencias
Abdullahi, I. N., & et al. (2022). Nasal Staphylococcus aureus and S. pseudintermedius carriage in healthy dogs and cats: A systematic review of their antibiotic resistance, virulence and genetic lineages of zoonotic relevance. Journal of Applied Microbiology, 133(6), 3368–3390. https://doi.org/10.1093/jambio/lxac062
Alcântara, L. P., & et al. (2023). Antimicrobial susceptibility of Staphylococcus spp. isolated from felids and canids in Belo Horizonte Zoo, Brazil. Journal of Zoo and Wildlife Medicine, 54(3), 575–582. https://doi.org/10.1638/2022-0128
Bello-López, J. M., Cabrera-Maldonado, C., & Castro-Escarpulli, G. (2019). Transferência horizontal de genes e sua associação com a resistência a antibióticos no gênero Aeromonas. Revista Latinoamericana de Microbiología, 60(1), 34–41. https://doi.org/10.26749/rlm.2019.60.1.5
Burke, M., & Santoro, D. (2023). Prevalence of multidrug-resistant coagulase-positive staphylococci in canine and feline dermatological patients over a 10-year period: A retrospective study. Microbiology, 169(2), 1–14. https://doi.org/10.1099/mic.0.001392
Caddey, B., & et al. (2025). Companions in antimicrobial resistance: Examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clinical Microbiology Reviews, 38(1), Article e00146-22. https://doi.org/10.1128/cmr.00146-22
Clark, A. E., Kaleta, E. J., Arora, A., & Wolk, D. M. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clinical Microbiology Reviews, 26(3), 547–603. https://doi.org/10.1128/CMR.00072-12
Clinical and Laboratory Standards Institute. (2020). Performance standards for antimicrobial susceptibility testing (29th ed., CLSI supplement M100). https://clsi.org/media/3486/clsi_astnewsupdate_january2020.pdf
Delialioglu, N., & et al. (2005). Inducible clindamycin resistance in staphylococci isolated from clinical samples. Journal of Antimicrobial Chemotherapy, 55(4), 479–481. https://doi.org/10.1093/jac/dki024
Fan, H. H., Kleven, S. H., & Jackwood, M. W. (1995). Application of polymerase chain reaction with arbitrary primers to strain identification of Mycoplasma gallisepticum. Avian Diseases, 39(4), 729–735.
Guardabassi, L. (2016). Antibiotic resistance in companion animals. Veterinary Microbiology, 187, 3–9. https://doi.org/10.1016/j.vetmic.2016.03.007
Guo, D., & et al. (2023). Staphylococcus aureus infections in companion animals: A global perspective. Journal of Clinical Microbiology, 61(2), Article e01457-22. https://doi.org/10.1128/jcm.01457-22
Lax, S., & et al. (2014). Longitudinal analysis of microbial interactions in the built environment. Science Advances, 1(1), Article e1400329. https://doi.org/10.1126/sciadv.1400329
Leite, D. P. S. B. M., & et al. (2023). Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment. Brazilian Journal of Microbiology, 54, 209–219. https://doi.org/10.1007/s42770-022-00856-0
Marco-Fuertes, A., & et al. (2024). Multidrug-resistant commensal and infection-causing Staphylococcus spp. isolated from companion animals in the Valencia region. Veterinary Sciences, 11(2), Article 3554. https://doi.org/10.3390/vetsci11020355
Nakagawa, S., & et al. (2005). Gene sequences and specific detection for Panton-Valentine leukocidin. Biochemical and Biophysical Research Communications, 328(3), 965–970. https://doi.org/10.1016/j.bbrc.2005.01.054
Nocera, F. P., & et al. (2021). On Gram-positive- and Gram-negative-bacteria-associated canine and feline skin infections: A 4-year retrospective study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals, 11(6), Article 1603. https://doi.org/10.3390/ani11061603
O’Neill, J. (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
Paterson, G. K., & et al. (2012). The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy, 67(12), 2809–2813. https://doi.org/10.1093/jac/dks329
Phumthanakorn, N., & et al. (2022). Frequency, distribution, and antimicrobial resistance of coagulase-negative staphylococci isolated from clinical samples in dogs and cats. Microbial Drug Resistance, 28(2), 236–243. https://doi.org/10.1089/mdr.2021.0275
Sampaio, J. R. (1995). Estatística aplicada à pesquisa (2a ed.). Pioneira.
Sawant, A., Gillespie, B., & Oliver, S. (2009). Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Veterinary Microbiology, 134(1–2), 73–81. https://doi.org/10.1016/j.vetmic.2008.09.006
Souza, T. G. V., & et al. (2024). Occurrence, genetic diversity, and antimicrobial resistance of methicillin-resistant Staphylococcus spp. in hospitalized and non-hospitalized cats in Brazil. PLoS ONE, 19(3), Article e0283320. https://doi.org/10.1371/journal.pone.0283320
Truong-Bolduc, Q. C., Zhang, X., & Hooper, D. C. (2003). Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. Journal of Bacteriology, 185(10), 3127–3138. https://doi.org/10.1128/JB.185.10.3127-3138.2003
Truong-Bolduc, Q. C., & et al. (2005). MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. Journal of Bacteriology, 187(7), 2395–2405. https://doi.org/10.1128/JB.187.7.2395-2405.2005
Truong-Bolduc, Q. C., Strahilevitz, J., & Hooper, D. C. (2006). NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(3), 1104–1107. https://doi.org/10.1128/AAC.50.3.1104-1107.2006
World Health Organization. (2021). Global action plan on antimicrobial resistance. World Health Organization.