CARBON FARMING: POTENCIAL DE MITIGAÇÃO DAS MUDANÇAS CLIMÁTICAS EM SOLOS AGRÍCOLAS BRASILEIROS
DOI:
https://doi.org/10.56238/revgeov16n5-168Palavras-chave:
Agricultura de Baixo Carbono, Sequestro de Carbono, Gases de Efeito EstufaResumo
Um dos maiores desafios socioambientais contemporâneos, as mudanças climáticas impõem riscos à segurança alimentar e à resiliência dos agroecossistemas tropicais. Nesse contexto, o conjunto de práticas de manejo do solo denominado carbon farming representa uma estratégia inteligente para maximizar o sequestro de carbono e reduzir as emissões líquidas de gases de efeito estufa provenientes das atividades agrícolas. Este estudo avaliou a efetividade dessas práticas no Brasil por meio de uma Revisão Bibliográfica Sistemática (RBS), fundamentada no protocolo PRISMA. Foram analisados 56 artigos publicados entre 2015 e 2025, extraídos das bases SciELO, Web of Science, Scopus e Google Scholar. Os trabalhos foram organizados em eixos temáticos, com destaque segundo a frequência de publicações para: sistema de plantio direto e rotação de culturas (25%), integração lavoura-pecuária-floresta (18%) e recuperação de pastagens (16%) e sistemas agroflorestais/silvipastoris (14%). Os resultados indicaram ganhos consistentes: o SPD aumentou estoques em até 1,5 Mg C ha⁻¹ ano⁻¹; culturas de cobertura reduziram a adubação nitrogenada em até 30%; o manejo hídrico em arroz irrigado mitigou até 96% das emissões de CH₄; a fertirrigação em cana-de-açúcar reduziu em 50% o N₂O; a recuperação de pastagens e os sistemas silvipastoris adicionaram até 1,2 Mg C ha⁻¹ ano⁻¹; a ILPF elevou até 2,8 Mg C ha⁻¹ ano⁻¹; e SAFs/SPS alcançaram até 7 Mg C ha⁻¹ ano⁻¹. Conclui-se que o carbon farming constitui um portfólio de práticas eficazes e complementares, mas sua expansão em larga escala depende da superação de barreiras técnicas e econômicas, além do fortalecimento de políticas públicas.
Downloads
Referências
ABREU, R. C. R. de et al. Land use change and greenhouse gas emissions: an explanation about the main emission drivers. Ciência Animal Brasileira, v. 25, e-77646E, 2024. DOI: 10.1590/1809-6891v25e-77646E.
ACOSTA, J. A. A. et al. Decomposition and nutrient release of cover crops in different soil management systems. Revista Brasileira de Ciência do Solo, v. 38, n. 3, p. 1083–1092, 2014. DOI: 10.1590/S0100-06832014000400015.
ALCÂNTARA, A. F. et al. Effect of soil management on carbon stock and soil aggregation in an area of natural regeneration and surrounding systems in the Atlantic Forest biome. Revista Ambiente & Água, v. 19, n. 2, e2987, 2024. DOI: 10.4136/ambi-agua.2987.
AMELUNG, W. et al. Towards a global-scale soil climate mitigation strategy. Nature Communications, v. 11, n. 5427, 2020. DOI: https://doi.org/10.1038/s41467-020-18887-7
ANDRADE, C. A. de et al. Mineralização e efeitos de biocarvão de cama de frango sobre a capacidade de troca catiônica do solo. Pesquisa Agropecuária Brasileira, v. 50, n. 5, p. 407–416, 2015. DOI: 10.1590/S0100-204X2015000500008.
ASSAD, E. D. et al. Agricultura sob cenários de mudanças climáticas: riscos, vulnerabilidades e adaptação. Revista de Política Agrícola, v. 31, n. 3, p. 57-76, 2022.
BALDOTTO, L. E. B.; BALDOTTO, M. A. Indicators of soil quality, redox properties, and bioactivity of humic substances of soils under integrated farming, livestock, and forestry. Revista Ceres, v. 65, n. 4, p. 385–393, 2018. DOI: 10.1590/0034-737X201865040010.
BEUTLER, S. J. et al. Soil chemical and physical attributes in integrated crop-livestock systems in the Brazilian Cerrado. Soil & Tillage Research, v. 161, p. 1-10, 2016. DOI: https://doi.org/10.1016/j.still.2016.03.004
BAIÃO, C. F. P.; MASSI, K. G.; SOUSA JUNIOR, W. C. Long-term assessment of fire-induced carbon loss in Southeast Atlantic Forest. Revista Árvore, v. 48, e4824, 2024. DOI: 10.53661/1806-9088202448263806.
CARMO, M. S. do et al. Energy balance and carbon footprint of irrigated common bean production. Journal of Cleaner Production, v. 112, p. 4475-4484, 2016. DOI: https://doi.org/10.1016/j.jclepro.2015.07.079
CARVALHO, A. M. et al. Soil N₂O fluxes in integrated production systems, continuous pasture and Cerrado. Nutrient Cycling in Agroecosystems, v. 108, p. 69–83, 2017.
CARVALHO, A. M. et al. N₂O emissions from sugarcane fields under contrasting watering regimes in the Brazilian Savannah. Environmental Technology & Innovation, v. 22, 101470, 2021.
CASTRO, A. C. et al. The effects of Gliricidia-derived biochar on sequential cropping in Brazilian Planosol. Sustainability, v. 10, n. 3, 578, 2018. DOI: 10.3390/su10030578.
CORDEIRO, L. A. M. et al. Integração lavoura-pecuária e integração lavoura-pecuária-floresta: estratégias para intensificação sustentável do uso do solo. Cadernos de Ciência & Tecnologia, v. 32, p. 15–43, 2015.
CORRÊA, R. S. et al. Wastewater reuse in irrigation: short-term impacts on soil carbon and nitrogen. Agricultural Water Management, v. 248, 106808, 2021. DOI: https://doi.org/10.1016/j.agwat.2021.106808
DOS REIS, L. N.; CORAZZA, R. I. Políticas públicas de controle do desmatamento: avanços, retrocessos e perspectivas. Revista de Administração Pública, v. 59, n. 1, p. 112-134, 2025. DOI: https://doi.org/10.1590/0034-761220240143
EMBRAPA. Agricultura de Baixa Emissão de Carbono. Brasília: Embrapa, 2021.
FAQUIM, V. et al. Greenhouse gas mitigation in sugarcane systems through subsurface drip fertigation and green harvest. Agricultural Systems, v. 213, 103589, 2024.
FERREIRA, E. P. de B. Plantas de cobertura e adubação nitrogenada em milho e feijão-caupi em rotação. 2016. Tese (Doutorado em Agronomia) – Universidade Federal Rural do Semi-Árido, Mossoró, 2016.
FREITAS, I. C. V. et al. Changing the land use from degraded pasture into integrated farming systems enhance soil carbon stocks in the Cerrado biome. Acta Scientiarum. Agronomy, v. 46, e63601, 2024. DOI: 10.4025/actasciagron.v46i1.63601.
FURTADO NETO, A. O. et al. Methane production and flux in central Amazon forest soils. Biogeochemistry, v. 145, n. 1-2, p. 1-16, 2019. DOI: https://doi.org/10.1007/s10533-019-00600-2
GALDINO, S.; SIGNOR, D. Systematic review of greenhouse gas emissions in viticulture: a PRISMA-based analysis. Journal of Cleaner Production, v. 418, 138011, 2024. DOI: https://doi.org/10.1016/j.jclepro.2023.138011
GOMIDE, L. R. et al. Modeling aboveground carbon stock under the forest canopy influence. Revista Árvore, v. 48, e4826, 2024. DOI: 10.53661/1806-9088202448263778.
GUAMÁN-RIVERA, S. A. et al. Carbon footprint assessment of livestock farms under tropical conditions: first approximation. Brazilian Journal of Biology, v. 85, e293349, 2025. DOI: 10.1590/1519-6984.293349.
KITCHENHAM, B.; CHARTERS, S. Guidelines for performing systematic literature reviews in software engineering. EBSE Technical Report, Keele University, 2007. Disponível em: https://www.researchgate.net/publication/302924724
LEFEBVRE, D. et al. Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Scientific Reports, v. 10, 19479, 2020. DOI: 10.1038/s41598-020-76470-y.
LOPES, F. de S. et al. Nitrous oxide emission in response to N application in irrigated sugarcane. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, n. 11, p. 758–763, 2018. DOI: 10.1590/1807-1929/agriambi.v22n11p758-763.
MAGALHÃES, T. R. et al. Soil carbon stocks in Oxisols under different management in the southern Brazilian Plateau. Revista Brasileira de Ciência do Solo, v. 48, e0230021, 2024. DOI: https://doi.org/10.36783/18069657rbcs20230021
OLIVEIRA et al. Carbono edáfico: O elo para o equilíbrio climático e a segurança alimentar. Aracê – Direitos Humanos em Revista, v. 7, p. 31680-31701, 2025.
OZÓRIO, J. M. B. et al. Effects of different agricultural systems on organic matter and aggregation of a medium-textured soil in subtropical region. Revista Ambiente & Água, v. 19, e2952, 2024. DOI: 10.4136/ambi-agua.2952.
PETTER, F. A. et al. Microbial biomass and organic matter in an Oxisol under application of biochar. Revista Ceres, v. 66, n. 3, p. 215–223, 2019. DOI: 10.1590/1678-4499.2018237.
ROSA, J. S. et al. Carbon dioxide evasion from agricultural catchments in the Amazon Basin. Biogeosciences, v. 14, p. 1225-1239, 2017. DOI: https://doi.org/10.5194/bg-14-1225-2017
RIBEIRO, J. F. et al. Carbon stocks and lability in land use and management systems in southwestern Goiás, Brazil. Revista de Ciências Agrárias, v. 54, e74416, 2023. DOI: 10.1590/1983-40632023v5374416.
SACRAMENTO, J. A. A. S. et al. Spatial variability and changes in carbon stocks in Arenosols under different uses. Catena, v. 162, p. 45-55, 2018. DOI: https://doi.org/10.1016/j.catena.2017.11.021
SALOMÃO, G. B. et al. Soil loss and runoff in cover crops under natural rainfall. Revista Brasileira de Ciência do Solo, v. 44, e0190134, 2020. DOI: 10.36783/18069657rbcs20190134.
SANTOS, D. M. dos et al. Soil properties changing and carbon losses by anthropic drainage in savanna palm swamp (vereda), Central Brazil. Revista Brasileira de Ciência do Solo, v. 46, e144, 2023. DOI: https://doi.org/10.36783/18069657rbcs20220144
SANTOS, M. J. et al. Surface energy balance and climate extremes in an Amazonian metropolitan region. Theoretical and Applied Climatology, v. 147, p. 1915-1932, 2024. DOI: https://doi.org/10.1007/s00704-021-03763-9
SAVIOLI, N. L. et al. Brachiaria in crop rotation increases microbial biomass carbon in Cerrado soils. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 28, n. 3, p. 215–223, 2024. DOI: 10.1590/1807-1929/agriambi.v28n3p215-223.
SEVERO, L. S. et al. Stable carbon isotope (¹³C) to quantify tree biomass input to soil organic matter. Applied Soil Ecology, v. 113, p. 12-21, 2017. DOI: https://doi.org/10.1016/j.apsoil.2016.11.005
SIGNOR, D. et al. Greenhouse gas emissions in goat production systems in the Brazilian semiarid region. Small Ruminant Research, v. 210, 106636, 2022. DOI: https://doi.org/10.1016/j.smallrumres.2022.106636
SILVA, J. E. et al. Soil fertility, carbon stock and aggregate stability under integrated crop-livestock-forestry systems. Agroforestry Systems, v. 95, p. 403-416, 2021. DOI: https://doi.org/10.1007/s10457-020-00544-5
SILVA, A. G. B. et al. CO₂ emission in soil under eucalyptus cultivation with biochar application. Ciência e Agrotecnologia, v. 48, e80082, 2024A. DOI: 10.1590/1983-40632024v5480082.
SILVA, F. L. et al. Fertility and carbon stock in pasture and forest environments in the Southern Amazon. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 28, e270888, 2024B. DOI: 10.1590/1807-1929/agriambi.v28n1e270888.
SILVA, L. P. da et al. Olive-sheep integration systems as a low-carbon alternative in Southern Brazil. Agroforestry Systems, v. 98, p. 1121-1135, 2024C. DOI: https://doi.org/10.1007/s10457-023-00885-4
SOARES, J. C. et al. Carbon stock and horizontal structure in riparian forests of southern Brazil. Ecological Indicators, v. 146, 109840, 2023. DOI: https://doi.org/10.1016/j.ecolind.2023.109840
SOUSA, T. R. de et al. N₂O emissions from soils under different uses in the Brazilian Cerrado – A review. Revista Brasileira de Ciência do Solo, v. 45, e0210093, 2021. DOI: 10.36783/18069657rbcs20210093.
SOUZA, S. N. M. de et al. Potential of biogas energy and greenhouse gas scenarios from municipal solid waste. Renewable Energy, v. 135, p. 1237-1245, 2019. DOI: https://doi.org/10.1016/j.renene.2018.12.046
TANAKA, D. L. P. et al. Soil aggregation and organic carbon under different management systems in the Cerrado of Mato Grosso. Revista de Ciências Agrárias, v. 38, e12508, 2025. DOI: 10.1590/1983-21252025v3812508rc.
TAVARES, R. L. M. et al. Sugarcane residue management impact soil greenhouse gas. Scientia Agricola, v. 75, n. 5, p. 422–431, 2018. DOI: 10.1590/1413-70542018422019817.
TITO, G. A. et al. Biochar and poultry litter compost improve soil fertility and maize yield. Agriculture, Ecosystems & Environment, v. 354, 109052, 2025. DOI: https://doi.org/10.1016/j.agee.2024.109052
TONINI, H. Avaliação financeira, estoque de carbono e mitigação de metano pelas árvores em sistemas silvipastoris no bioma Pampa. Ciência Florestal, v. 33, e70606, 2023. DOI: 10.5902/1980509870606.
TORRES, C. M. M. E. et al. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Scientific Reports, v. 7, 2017. DOI: 10.1038/s41598-017-16821-4.
TORRES, C. M. M. E. et al. Economic viability of an agroforestry system for indigenous communities in Brazil: a differentiated approach to risk reduction. Agroforestry Systems, 2024. DOI: https://doi.org/10.1007/s10457-024-01077-0
VILLANOVA, V. L. et al. Secondary forest succession increases carbon stocks in the Atlantic Forest. Forest Ecology and Management, v. 432, p. 1-10, 2019. DOI: https://doi.org/10.1016/j.foreco.2018.09.038
VITÓRIA, R. M. et al. Soil tillage scenarios and CO₂ emissions simulated by process-based models. Agricultural Systems, v. 197, 103320, 2022. DOI: https://doi.org/10.1016/j.agsy.2021.103320
ZSCHORNACK, T. et al. Greenhouse gas emissions from irrigated rice as affected by crop residue management and intermittent irrigation. Ciência Rural, v. 46, n. 5, p. 851–857, 2016A. DOI: 10.1590/0103-8478cr20150032.
ZSCHORNACK, T. et al. Impacto de plantas de cobertura e da drenagem do solo nas emissões de CH₄ e N₂O sob cultivo de arroz irrigado. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1031–1040, 2016B. DOI: 10.1590/S0100-204X2016000900016.