EVALUATION OF FILTERING AND INTERPOLATION OF PRODUCTIVITY DATA IN DEFINING MANAGEMENT ZONES IN PRECISION AGRICULTURE SYSTEMS
DOI:
https://doi.org/10.56238/revgeov16n5-302Keywords:
Precision Agriculture, Data Filtering, Spatial Interpolation, Management Zones, Yield MonitoringAbstract
Precision agriculture has emerged as a key technological approach to improve agricultural management, enabling the identification of spatial and temporal variability in yield-related factors. However, data quality from yield monitors is often compromised by measurement errors and statistical noise, making the filtering process a critical step for generating reliable information. This study aimed to evaluate the influence of data filtering and interpolation methods on the definition of management zones (MZs) in two agricultural areas located in Céu Azul, Brazil, using 11 years of soybean, corn, and wheat yield data. Raw and filtered data were interpolated using Inverse Distance Weighting (IDW) and Moving Average (MA) methods. Management zones were delineated through the Fuzzy C-Means algorithm and assessed using quality indices (FPI, MPE, VR, and ICVI). Results showed that filtered data interpolated by the Moving Average method exhibited greater consistency, reducing the coefficient of variation by 3 to 15%, and improving class distinction and spatial organization. It was concluded that data filtering significantly enhances the accuracy of management zone delineation, supporting more efficient site-specific input application.
Downloads
References
BAZZI, C. L.; MARTINS, M. R.; CORDEIRO, B. E.; GEBLER, L.; SOUZA, E. G.; SCHENATTO, K.; PAULA FILHO, P.L. Yield map generation of perennial crops for fresh consumption. Precision Agriculture, v. 1, p.1-14, 2021.
Beck, A.; Searcy, S.; Roades, J. Yield data filtering techniques for improved map accuracy. Engineering a Sustainable Future. v. 17, p. 423-431, 2001. doi: 10.13031/2013.6456
BETZEK, N. M.; SOUZA, E. G.; BAZZI, C. L.; SCHENATTO, K.; GAVIOLI, A.; MAGALHAES, P. S. G. Computational routines for the automatic selection of the best parameters used by interpolation methods to create thematic maps. Computers and Electronics in Agriculture, v.157, p. 49-62, 2019.https://doi.org/10.1016/j.compag.2018.12.004
BEZDEK, J. C. Pattern recognition with fuzzy objective function algorithms. New York, NY: Springer US, 1981. 253 p.
BURROUGH, P. A. Fuzzy mathematical methods for soil survey and land evaluation. European Journal of Soil Science, online, v. 40, n. 3, p. 477-492, 1989.
Byabazaire, J.; O’Hare, G.; Collier, R.; Kulatunga, C.; Delaney, D., “A Comprehensive Approach to Assessing Yield Map Quality in Smart Agriculture: Void Detection and Spatial Error Mapping”, Agronomy, v. 13, p. 1-15, 2023. DOI: 10.3390/agronomy13071943.
BLACKMORE, S. The interpretation of trends from multiple yield maps. v.26, p.37-51, 2000. https://doi.org/10.1016/S0168-1699(99)00075-7
DOERGE, T. A. Yield Map Interpretation. Journal of Production Agriculture, v.12 p. 54-61, 2013.https://doi.org/10.2134/jpa1999.0054
GAVIOLI, A.; SOUZA, E. G.; BAZZI, C. L.; SCHENATTO, K.; BETZEK, N. M. Identification of management zones in precision agriculture: An evaluation of alternative cluster analysis methods. v.181, p.86-102, 2019. https://doi.org/10.1016/j.biosystemseng.2019.02.019
GETAHUN, S.; KEFALE, H.; GELAYE, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. The Scientific World Journal. v.1 p.1-12. 2024. DOI: https://doi.org/10.1155/2024/2126734
KHAN, H.; FAROOQUE, A.; ACHARYA, B.; ABBAS, F.; ESAU, T.; ZAMAN, Q. U. Delineation of Management Zones for Site-Specific Information about Soil Fertility Characteristics through Proximal Sensing of Potato Fields. Agronomy, v.12, 2020. https://doi.org/10.3390/agronomy10121854
LI, Y.; SHI, Z.; WU, H.; LI, F.; LI, H. Definition of management zones for enhancing cultivated land conservation using combined spatial data. Environmental Management, online, v. 52, n. 4, p. 792-806, 2013.
MORAL, F. J.; TERRÓN, J. M.; SILVA, J. R. M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil & Tillage Research, online, v. 106, n. 2, p. 335-343, 2010.
PACCIORETTI, Pablo Ariel; CÓRDOBA, Mariano; BALZARINI, Mónica Graciela. FastMapping: Software to create field maps and identify management zones in precision agriculture. Computers and Electronics in Agriculture, v. 175, art. 105556, 2020. DOI: 10.1016/j.compag.2020.105556.
SCHENATTO, K.; SOUZA, E. G.; BAZZI, C. L.; BIER, V. A.; BETZEK, N. M.; GAVIOLI, A. Data interpolation in the definition of management zones. Acta Scientiarum, v.38, p.31-40, 2016. 10.4025/actascitechnol.v38i1.27745
SCHENATTO, K.; SOUZA, E. G.; BAZZI, C. L.; GAVIOLI, A. BETZEK, N. M.; BENEDUZZI, H. M. Normalization of data for delineating management zones. Computers and Electronics in Agriculture, v.43, p. 238-248, 2017 https://doi.org/10.1016/j.compag.2017.10.017
SOBJAK, R., SOUZA, E. G. DE, BAZZI, C. L., & HACHISUCA, A. M. M. AgDataBox-Map – Uma aplicação web para criação de mapas temáticos e zonas de manejo: avaliação dos usuários. Revista Caderno Pedagógico, 21(12), p. 1–24, 2024. https://doi.org/10.54033/cadpedv21n12-068.
ODEH, I. O. A.; MCBRATNEY, A. B.; CHITTLEBOROUGH, D. J. Soil pattern recognition with fuzzy c-means: application to classification and soil-landform interrelationship. Soil Science Society America Journal, online, v. 56, n. 2, p. 505-516, 1992.
ZERAATPISHEH, Mojtaba; BAKHSHANDEH, Esmaeil; EMADI, Mostafa; LI, Tengfei; XU, Ming. Integration of PCA and Fuzzy Clustering for Delineation of Soil Management Zones and Cost-Efficiency Analysis in a Citrus Plantation. Sustainability, Basel, v. 12, n. 14, art. 5809, 19 jul. 2020. DOI: 10.3390/su12145809.
ZHANG, Z.; LÜ, X.; LV, N.; CHEN, J.; FENG, B.; LI, X. W.; MA, L. Defining agricultural management zones using Gis techniques: Case study of Drip-irrigated cotton fields. Information Technology Journal, online, v. 12, n. 21, p. 6241-6246, 2013.