BIVALVE MOLLUSKS AS INDICATORS OF ENVIRONMENTAL POLLUTION IN THE AMAZON RIVER, BRAZIL
DOI:
https://doi.org/10.56238/revgeov17n1-145Keywords:
Escherichia coli, Antimicrobial Resistance, Bivalve Mollusks, Public Health, AmazonAbstract
Bivalve mollusks play an essential role in the maintenance of two aquatic ecosystems and can act as bioindicators of environmental pollution due to their capacity to accumulate pollutants. In the state of Amapá, the exploration of these organisms is poorly studied, especially in relation to microbiological contamination and antimicrobial resistance. This study aims to analyze the occurrence of Escherichia coli and other enterobacteria in two species of water mollusks (Prisodon obliquus and Triplodon corrugatus) collected in the Amazon River, in Macapá (AP), as well as to evaluate their antimicrobial resistance profile. This is a transversal study carried out between October 2022 and March 2023. Foram colletadas 40 samples on three points along the banks of the Amazon River. Microbiological and molecular analyzes will include bacterial isolation, antimicrobial susceptibility tests using the disk diffusion method, and detection of resistance and virulence genes by PCR. Foram 62 bacterial isolates were identified, including 31 from E. coli, 18 from Klebsiella pneumoniae and others belonging to Enterobacter, Citrobacter and Serratia. The strains present high resistance to streptomycin (100%), nalidixic acid (93.5%) and ceftazidime (90.3%). The blaCMY gene, associated with cephalosporin resistance, was identified in E. coli samples. The presence of multiresistant bacteria in mollusks from the waters of the Amazon River represents a potential public health risk and evidence of the need for integrated environmental surveillance and antimicrobial resistance control actions based on a One Health approach.
Downloads
References
Simeone, M. C., Cardoni, S., Piredda, R., Imperatori, F., Avishai, M., Grimm, G. W., & Denk, T. (2018). Comparative systematics and phylogeography of Quercus section Cerris in western Eurasia: Inferences from plastid and nuclear DNA variation. PeerJ, 6, e5793. https://doi.org/10.7717/peerj.5793
Esposito, G., Pastorino, P., & Prearo, M. (2022). Environmental stressors and pathology of marine molluscs. Journal of Marine Science and Engineering, 10, 313. https://doi.org/10.3390/jmse10030313
Silva, B. R., Menegardo, S. B., Aride, P. H. R., Lavander, H. D., Spago, F. R., & Souza, T. B. (2021). Microbiological quality of water and Perna (Linnaeus, 1758) mussels cultivated in Piúma, Espírito Santo, Brazil. Engenharia Sanitária e Ambiental, 26, 89–95. https://doi.org/10.1590/s1413-415220180169
Bacelar, M. O. B. (2019). O agronegócio: A territorialização e a expansão das fronteiras do capital no Amapá (Tese de doutorado). Universidade Federal de Goiás.
Pinheiro, L. A. R., Cunha, A. C., Cunha, H. F. A., Souza, L. R. de, Bilhalva, J. S., Brito, D. C., & Júnior, A. C. P. B. (2008). Aplicação de simulação computacional à dispersão de poluentes no baixo rio Amazonas: Potenciais riscos à captação de água na orla de Macapá-Amapá. Amazônia: Ciência e Desenvolvimento, 4, 27–44.
Costa, G. P. V., Bezerra, R. M., Cantuária, P. de C., et al. (2019). Qualidade da água distribuída à população de Macapá pelo sistema público de abastecimento. Biota Amazônia, 11, 31–37. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n2p31-37
Baker, K. S., Dallman, T. J., Field, N., Childs, T., Mitchell, H., Day, M., Weill, F.-X., Lefèvre, S., Tourdjman, M., Hughes, G., Jenkins, C., & Thomson, N. (2018). Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nature Communications, 9, 1–10. https://doi.org/10.1038/s41467-018-03949-8
Brasil. Ministério da Agricultura e Pecuária. Secretaria de Defesa Agropecuária. (2023). Portaria SDA/MAPA nº 884, de 6 de setembro de 2023. Diário Oficial da União.
Pimpão, D. M., & Mansur, M. C. D. (2009). Chave pictórica para identificação dos bivalves do baixo Rio Aripuanã, Amazonas, Brasil (Sphaeriidae, Hyriidae e Mycetopodidae). Biota Neotropica, 9, 377–384.
Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. (2019). Instrução Normativa nº 60, de 23 de dezembro de 2019. Diário Oficial da União.
Lima, L. S., Proietti-Junior, A. A., Rodrigues, Y. C., Vieira, M. C. S., Lima, L. N. G. C., Souza, C. O., Gonçalves, V. D., Lima, M. O., Rodrigues, D. P., & Lima, K. V. B. (2022). High genetic diversity and antimicrobial resistance in Escherichia coli highlight Arapaima gigas (Pisces: Arapaimidae) as a reservoir of quinolone-resistant strains in Brazilian Amazon rivers. Microorganisms, 10, 1–16. https://doi.org/10.3390/microorganisms10040808
Silva, B. R., Menegardo, S. B., Aride, P. H. R., Lavander, H. D., Spago, F. R., & Souza, T. B. (2021). Microbiological quality of water and Perna perna (Linnaeus, 1758) mussels cultivated in Piúma, Espírito Santo, Brazil. Engenharia Sanitária e Ambiental, 26, 89–95. https://doi.org/10.1590/s1413-415220180169
Walker, J. N., Flores-Mireles, A. L., Lynch, A. J. L., Pinkner, C., Caparon, M. G., Hultgren, S. J., & Desai, A. (2020). High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World Journal of Urology, 38, 2237–2245. https://doi.org/10.1007/s00345-019-03027-8
Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46, 165–170. https://doi.org/10.1128/aem.46.1.165-170.1983
Omar, K. B., & Barnard, T. G. (2014). Detection of diarrhoeagenic Escherichia coli in clinical and environmental water sources in South Africa using single-step 11-gene m-PCR. World Journal of Microbiology & Biotechnology, 30, 2663–2671. https://doi.org/10.1007/s11274-014-1690-4
Dong, N., Yang, X., Chan, E. W.-C., Zhang, R., & Chen, S. (2022). Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. eBioMedicine, 79, 103998. https://doi.org/10.1016/j.ebiom.2022.103998
Liu, Q., Li, M., Zhang, F., Yu, H., Zhang, Q., & Liu, X. (2017). The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system. Frontiers of Environmental Science and Engineering, 11, 12. https://doi.org/10.1007/s11783-017-0920-z
Lee, L.-H., Ab Mutalib, N.-S., Law, J. W.-F., Wong, S. H., & Letchumanan, V. (2018). Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Frontiers in Microbiology, 9, 2513. https://doi.org/10.3389/fmicb.2018.02513
Oliveira, A. M. S., Baraúna, R. A., Marcon, D. J., Lago, L. A. B., Silva, A., Lusio, J., Tavares, R. D. S., Tacão, M., Henriques, I., & Schneider, M. P. C. (2020). Occurrence, antibiotic-resistance and virulence of E. coli strains isolated from mangrove oysters (Crassostrea gasar) farmed in estuaries of Amazonia. Marine Pollution Bulletin, 157, 111302. https://doi.org/10.1016/j.marpolbul.2020.111302
Martins, A., Silva, R. A., Ferreira, L. O., Licate, M. M., Delafiori, C. R., & Pôrto, S. F. (2019). Resistência a antimicrobianos de enterobactérias isoladas de águas destinadas ao abastecimento público na região centro-oeste do estado de São Paulo, Brasil. Revista Pan-Amazônica de Saúde, 10. http://dx.doi.org/10.5123/s2176-6223201900065
Cho, S., Jackson, C. R., & Frye, J. G. (2020). The prevalence and antimicrobial resistance phenotypes of Salmonella, Escherichia coli and Enterococcus sp. in surface water. Letters in Applied Microbiology, 71, 3–25. https://doi.org/10.1111/lam.13301
Lenart-Boroń, A., Prajsnar, J., Guzik, M., Boroń, P., & Chmiel, M. (2020). How much of antibiotics can enter surface water with treated wastewater and how it affects the resistance of waterborne bacteria: A case study of the Białka river sewage treatment plant. Environmental Research, 191, 110037. https://doi.org/10.1016/j.envres.2020.110037
Al Qabili, D. M. A., Aboueisha, A.-K. M., Ibrahim, G. A., Youssef, A. I., & El-Mahallawy, H. S. (2022). Virulence and antimicrobial-resistance of shiga toxin-producing E. coli (STEC) isolated from edible shellfish and its public health significance. Archives of Microbiology, 204, 510. https://doi.org/10.1007/s00203-022-03114-2