GREENHOUSE GAS FLUXES IN COCOA PRODUCTION SYSTEMS: A REVIEW OF MANAGEMENT IMPACTS AND ECOSYSTEM SERVICES
DOI:
https://doi.org/10.56238/revgeov17n1-166Keywords:
Agroforestry Systems, Climate Change, Greenhouse Gas Emissions, Carbon Sequestration, Atlantic ForestAbstract
In the face of the global climate crisis, the Atlantic Forest, a biodiversity hotspot with only 24% of its original coverage remaining, faces the critical challenge of reconciling agricultural production and conservation. In this context, the conversion of natural ecosystems into agricultural systems has intensified greenhouse gas (GHG) emissions, especially in tropical regions. On the other hand, cocoa farming plays a relevant role in the conservation of the Atlantic Forest, with different production arrangements such as complex agroforestry systems, cabruca (coastal plantation systems), and full-sun monocultures. This review systematizes knowledge about greenhouse gas fluxes (CO₂, CH₄, and N₂O) in cocoa farming, comparing the impact of conventional monocultures with the resilience of agroforestry systems (AFS). While full-sun production intensifies emissions and soil degradation, evidence reveals that the cabruca system acts as a vital regulator, providing microclimatic stability and carbon stocks comparable to those of native forests. The analysis demonstrates that the structural complexity of agroforestry systems (AFS) not only mitigates global warming but also regenerates the physical, chemical, and biological attributes of the soil, guaranteeing essential ecosystem services. However, gaps persist related to the scarcity of long-term studies, methodological standardization, and calibration of biogeochemical models for tropical agroforestry systems. It is concluded that the adoption of agroforestry systems in cocoa farming constitutes a promising strategy to reconcile agricultural production, environmental conservation, and climate change mitigation in the Atlantic Forest.
Downloads
References
Alves, B. J. R.; Urquiaga, S.; Jantalia, C. P.; Madari, B. E.; Marchão, R. L.; Boddey, R. M. Protocolo para medições de fluxos de gases de efeito estufa em solos agrícolas. Brasília, DF: Embrapa, 2017.
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1074412
Bettiol, W. et al. Entendendo a matéria orgânica do solo. Brasília: Embrapa, 2023.
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1144679
Butterbach-Bahl, K.; Gunderson, P.; Ambus, P.; Augustin, J.; Beier, C.; Boeckx, P.; Dannenmann, M.; Gimeno, B. S.; Ibrom, A.; Kiese, R.; Kitzler, B.; Rees, R. M.; Smith, K. A.; Stevens, C. J.; Vesala, T.; Zechmeister-Boltenstern, S. Nitrogen processes in terrestrial ecosystems. In: SUTTON, Mark A. et al. (Eds.). The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge: Cambridge University Press, 2011. p. 99-125.
Filonchyk, M.; Hurynovich, V.; Yang, S.; Zhang, Z.; Li, Y. Agricultural greenhouse gas emissions and their drivers: a global perspective. Environmental Science and Pollution Research, Berlin, 2024.Disponível em: https://doi.org/10.1007/s11356-024-32119-4.Acesso em: 16 jan. 2026.
FUNDAÇÃO SOS MATA ATLÂNTICA. A Mata Atlântica em números: dados atualizados de cobertura florestal. São Paulo: SOS Mata Atlântica, 2025. Disponível em: https://www.sosma.org.br/causas/mata-atlantica/. Acesso em: 16 jan. 2026.
Han, G.; Zhu, X. Changes in soil greenhouse gas fluxes by land use change from primary forest: a global meta-analysis. Global Change Biology, v. 26, p. 3220–3234, 2020. https://doi.org/10.1111/gcb.14993
Heming, Neander Marcel; Schroth, Goetz; Talora, Daniela C.; Faria, Deborah. Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agronomy for Sustainable Development, v. 42, art. 48, 2022.https://doi.org/10.1007/s13593-022-00780-w
IBGE - Instituto Brasileiro de Geografia e Estatística. Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250.000. Rio de Janeiro: IBGE, 2022.
IBGE - Instituto Brasileiro de Geografia e Estatística. Manual Técnico da Vegetação Brasileira. 2ª ed. revisada e ampliada. p. 271, 2012.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. The Intergovernmental Panel on Climate Change. Genebra: IPCC, 2015. Disponível em: https://www.ipcc.ch/. Acesso em: 13 dez. 2025.
IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2023. https://www.ipcc.ch/report/ar6/syr/
Kamyab, H.; SaberiKamarposhti, M.; Hashim, H.; Yusuf, M. Dinâmica de Carbono em Emissões e Remoções de Gases de Efeito Estufa Agrícolas: Uma Revisão Abrangente. Carbono. Lett. 2024, 34, 265–289.
Kouadio, K.A.L.; Kouakou, A.T.M.; Zanh, G.G.; Jagoret, P.; Bastin, J.-F.; Barima, Y.S.S. Estrutura Florística, Potenciais Estoques de Carbono e Dinâmica em Sistemas Agroflorestais Baseados em Cacau na Costa do Marfim (África Ocidental). Agrofor. Syst. 2024, 99, 12.
Lima, L. J. B.; Hamzagic, M. Greenhouse Gases and Air Pollution: Commonalities and Differentiators. Revista Científica Multidisciplinar Núcleo do Conhecimento, São Paulo, 27 set. 2022. 102-144.
Masson-Delmotte et al. (eds.) (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC. Cambridge University Press.
Maney, C. et al. Modelling biodiversity responses to land use in areas of cocoa-based agroforestry systems and open land systems. Agriculture, Ecosystems e Environment, 2022. DOI: https://doi.org/10.1016/j.agee.2021.107349
Mapanda, F.; Mupini, J.; Wuta, M.; Nyamangara, J.; Rees, R.M. Uma avaliação interecossistema dos efeitos da cobertura e do uso do solo sobre a emissão do solo de gases de efeito estufa selecionados e propriedades relacionadas do solo no Zimbábue. Eur. J. Soil Sci. 2010, 61, 721–733.
MAPBIOMAS. Coleção 9 da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil. São Paulo: MapBiomas, 2024. Disponível em: https://mapbiomas.org. Acesso em: 16 jan. 2026.
Mittermeier, R.A., Fonseca, G.A.B., Rylands, A.B., Brandon, K., 2005. A brief history of biodiversity conservation in Brazil. Conservation Biology 19, 601-611. https://doi.org/10.1111/j.1523-1739.2005.00709.
Mudanças Climáticas do IPCC 2013: A Base das Ciências Físicas. contribuição do Grupo de Trabalho I para o Quinto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, Reino Unido; Nova York, NY, EUA, 2013.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501.
Pinto, L. P. et al. A Mata Atlântica no sul da Bahia: composição florística, estrutura e conservação. Paubrasilia, v. 2, n. 1, p. 1–15, 2019. https://periodicos.ufba.br/index.php/paubrasilia/article/view/30890
Rezende, C. L.; Scarano, F. R.; Assad, E. D.; et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Science Advances, v. 4, n. 4, eaat9174, 2018.
Saputra, D. D. et al. Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agroforestry Systems, v. 94, p. 2041–2054, 2020.
https://link.springer.com/article/10.1007/s10457-020-00548-9
Scarano, F. R.; Ceotto, P. Brazilian Atlantic Forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation, v. 30, p. 1–16, 2015.
SOS MATA ATLÂNTICA; INPE. Atlas dos Remanescentes Florestais da Mata Atlântica período 2019-2020. São Paulo: Fundação SOS Mata Atlântica e INPE, 2022. Disponível em: https://www.sosma.org.br/iniciativas/atlas-da-mata-atlantica.
SOS MATA ATLÂNTICA; INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE). Atlas dos Remanescentes Florestais da Mata Atlântica: Período 2022–2023. São Paulo: Fundação SOS Mata Atlântica; São José dos Campos: INPE, 2024. Disponível em:
https://www.sosma.org.br/projeto/atlas-da-mata-atlantica/. Acesso em: 16 jan. 2026.
Sousa Neto, E. R.; Carmo, J. B.; Keller, M.; Martins, S. C.; Alves, L. F.; Vieira, S. A.; Piccolo, M. C.; Camargo, P. B. Soil–atmosphere exchange of CO₂, CH₄ and N₂O in the Atlantic Forest of Brazil. Biogeosciences, Göttingen, v. 8, n. 3, p. 733–742, 2011. Disponível em: https://doi.org/10.5194/bg-8-733-2011. Acesso em: 16 jan. 2026.
Sterling, A., Suárez-Córdoba, Y. D., Orlandi, F. D. B., & Rodríguez-León, C. H.. Soil–Atmosphere GHG Fluxes in Cacao Agroecosystems on São Tomé Island, Central Africa: Toward Climate-Smart Practices. Land, v. 14, n. 9, p. 1918, 2025.
Sterling, A., Suárez-Córdoba, Y. D., Orlandi, F. D. B., & Rodríguez-León, C. H.. Soil–Atmosphere GHG Fluxes in Cacao Agroecosystems on São Tomé Island, Central Africa: Toward Climate-Smart Practices. Land, v. 14, n. 9, p. 1918, 2025.
Suárez, L. R.; Suárez Salazar, J. C.; Casanoves, F.; Bieng, M. A. N. Cacao agroforestry systems improve soil quality: comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems e Environment, 2021. DOI: https://doi.org/10.1016/j.agee.2021.107349
TINOCO-JARAMILLO, L. et al. Agroforestry systems of cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests, v. 15, 195, 2024. https://doi.org/10.3390/f15010195
Wainaina, P. W. et al. A review of the trade-offs across different cocoa production systems: implications for sustainability and biodiversity conservation. Sustainability, v. 13, n. 19, 10945, 2021. https://doi.org/10.3390/su131910945
Wolf, S.; Paul-Limoges, E. Seca e calor reduzem a absorção de carbono nas florestas. Comun Natural. 2023, 14, 6217.