ENERGY OPTIMIZATION IN SPRAY DRYING OF COCONUT MILK POWDER: A TRANSPORT PHENOMENA APPROACH FOR COST-EFFECTIVE INDUSTRIAL PRODUCTION
DOI:
https://doi.org/10.56238/revgeov16n5-081Keywords:
Spray Drying, Coconut Milk Powder, Energy Efficiency, Transport Phenomena, Operational OptimizationAbstract
The growing demand for powdered food products, combined with rising energy costs, highlights the need for more efficient and sustainable industrial processes. In the case of coconut milk, a widely used ingredient in the food industry, there is a gap between production potential and the economic feasibility of spray drying, mainly due to high thermal energy consumption. This study aims to analyze energy optimization strategies based on Transport Phenomena to reduce costs and improve the thermal efficiency of the drying process. Thermo-energetic modeling and parametric simulations were performed to evaluate different operational scenarios, considering inlet and outlet variables, thermal losses, and process yield. The results show that integrating heat recovery, thermal insulation, and operational control increased overall efficiency from 45.2% to 67.8%, while reducing specific energy consumption from 5.30 to 3.48 kWh/kg, improving yield and reducing particle deposition. These findings indicate that relatively simple interventions can generate significant performance gains, contributing to the technical, economic, and environmental sustainability of the sector. Furthermore, the methodology developed demonstrates high potential for replication in other food matrices with similar physicochemical characteristics.
Downloads
References
ADSARE, S. R.; ANNAPURE, U. S. Microencapsulation of curcumin using coconut milk whey and gum Arabic. Journal of Food Engineering, Oxford, v. 292, p. 110502, 2021. doi:10.1016/j.jfoodeng.2021.110502.
ALVES, R. P.; COSTA, J. C.; SOUZA, F. L. Energy costs and economic performance in thermal drying processes for the food industry. Journal of Food Process Engineering, Hoboken, v. 46, n. 4, p. e16112, 2023. doi:10.1111/jfpe.16112.
ALVES, R. P. et al. Energy performance assessment in spray drying of food emulsions: operational factors and optimization strategies. Drying Technology, v. 41, n. 10, p. 2134–2145, 2023.
ARAÚJO, G. A.; SILVA, M. A.; ALMEIDA, R. P.; SANTOS, J. L. Integration of renewable energy sources in spray drying systems: techno-economic analysis. Renewable Energy, Amsterdam, v. 193, p. 1220-1233, 2022. doi:10.1016/j.renene.2022.04.019.
ARAÚJO, G. A. et al. Estratégias de descarbonização em processos térmicos industriais: análise técnica e econômica. Energy Reports, v. 8, p. 995–1007, 2022.
CHEN, H.; WANG, Y.; LI, X.; ZHOU, Y.; LIU, J. Microencapsulation of plant-based emulsions: effect on powder functionality and stability. LWT – Food Science and Technology, Amsterdam, v. 152, p. 112378, 2021. doi:10.1016/j.lwt.2021.112378.
DANTAS, M. C. Avaliação termoenergética de processos industriais de secagem: análise de eficiência e reaproveitamento de calor. Thermal Science and Engineering Progress, v. 50, p. 101637, 2024.
DANTAS, M. C. Energy, exergy, economy and environment (4E) analysis in thermal processes: a critical review and industrial perspectives. Energy Reports, Amsterdam, v. 11, p. 5481-5495, 2024. doi:10.1016/j.egyr.2024.03.018.
FERNANDES, R. V. B.; SOUZA, H. J. B.; SILVA, M. A.; OLIVEIRA, L. R. Physicochemical properties and microstructure of spray-dried vegetable emulsions. Food Hydrocolloids, Oxford, v. 143, p. 108993, 2023. doi:10.1016/j.foodhyd.2023.108993.
GOULA, A. M.; KOURTIDOU, A. Energy efficiency in spray drying processes: heat recovery and process optimization strategies. Journal of Food Engineering, Oxford, v. 361, p. 111145, 2025. doi:10.1016/j.jfoodeng.2024.111145.
KABOOSI, K.; SHEKARI, M. The effect of maltodextrin and gum Arabic on stability and quality of spray-dried plant emulsions. Journal of Food Process Engineering, Hoboken, v. 45, n. 2, p. e13966, 2022. doi:10.1111/jfpe.13966.
KAPIL, R.; KUMAR, P.; ARORA, S.; SINGH, A. Multiphase modelling of spray drying: coupling CFD with population balance for improved energy efficiency. Drying Technology, New York, v. 43, n. 2, p. 245-263, 2025. doi:10.1080/07373937.2025.2345678.
MARTYNENKO, A.; VIEIRA, G. N. A. Sustainability of drying technologies: system analysis. Sustainable Food Technology, Cambridge, v. 1, p. 629-640, 2023. doi:10.1039/D3FB00080J.
NIK ABD RAHMAN, N.; MOHAMAD, S.; ZHANG, M.; MUJUMDAR, A. S. Wall deposition and stickiness behavior during spray drying of high-fat food emulsions. Journal of Food Engineering, Oxford, v. 360, p. 111063, 2024. doi:10.1016/j.jfoodeng.2023.111063.
RAJ, R. P.; KUMAR, S.; WOO, M. W. Transient drying behaviour and Biot number implications in spray-dried powders. Powder Technology, Amsterdam, v. 437, p. 118833, 2024. doi:10.1016/j.powtec.2023.118833.
RAZMI, R.; JUBAER, H.; KREMPSKI-SMEJDA, M.; JASKULSKI, M.; XIAO, J.; CHEN, X. D.; WOO, M. W. Recent initiatives in effective modeling of spray drying. Drying Technology, New York, v. 39, n. 13, p. 1754-1773, 2021. doi:10.1080/07373937.2021.1902344.
SAMBORSKA, K. et al. Powdered plant beverages obtained by spray-drying without carrier addition—physicochemical and chemometric studies. Scientific Reports, London, v. 14, p. 4488, 2024. doi:10.1038/s41598-024-54978-x.
SAMBORSKA, K. et al. Thermal and economic performance of spray drying in the food industry: recent advances and future perspectives. Food Engineering Reviews, v. 16, p. 243–261, 2024.
SOUZA, H. J. B.; FERNANDES, R. V. B.; OLIVEIRA, L. R.; SILVA, M. A. Effect of drying conditions on stickiness and yield of coconut milk powder. Journal of Food Processing and Preservation, Hoboken, v. 46, n. 1, p. e16009, 2022. doi:10.1111/jfpp.16009.
SUNDARARAJAN, P.; MOSER, J.; WILLIAMS, L.; CHIANG, T.; RIORDAN, C.; METZGER, M.; ZHANG-PLASKET, F.; WANG, F.; COLLINS, J.; WILLIAMS, J. Driving spray drying towards better yield: tackling a problem that sticks around. Pharmaceutics, Basel, v. 15, n. 8, p. 2137, 2023. doi:10.3390/pharmaceutics15082137.
SUNDARARAJAN, P. et al. Fouling behavior and energy loss mechanisms in industrial spray dryers: implications for efficiency improvement. Powder Technology, v. 427, p. 118777, 2023.
SUTAR, S. V.; YADAV, G. D. Advancements in spray drying system for heat recovery, methodology, and economics: a review. Drying Technology, New York, v. 41, n. 16, p. 2537-2565, 2023. doi:10.1080/07373937.2023.2280641.