SPATIAL AUTOCORRELATION OF SNAKEBITES IN THE MUNICIPALITY OF RIO DE JANEIRO, BRAZIL

Authors

  • Ana Paula da Conceição Fernandes de Amorim
  • Luis Sauchay Romero
  • Moana Ferreira dos Santos
  • Maria Cristina Schneider
  • Simone Aranha Nouér
  • Ricardo Pereira Igreja

DOI:

https://doi.org/10.56238/revgeov16n5-084

Keywords:

Poisoning, Neglected Tropical Disease, Risk, Prevalence, Moran's Index

Abstract

Snake bites are a global public health problem, with approximately 2.7 million cases annually. In Brazil, reporting snake bites is mandatory, with around 29,000 cases recorded each year, and antivenom is available free of charge in the public health system. In the city of Rio de Janeiro, there are around 150 reports annually. Knowing the spatial distribution of these accidents is essential for the efficient planning and allocation of antivenom. This study aimed to analyze the spatial autocorrelation of snake bites in the city of Rio de Janeiro between 2007 and 2017. This is an observational, cross-sectional study with data from SINAN. The highest prevalence rates were concentrated in the West Zone, an area where the two reference units for treating poisoning are located. The Moran index was 0.46, with high statistical significance (p < 0.001), indicating positive spatial autocorrelation and dependence between neighborhoods. The Moran’s Local Index (LISA) confirmed the West Zone as the area with the highest risk of incidence. The most affected neighborhoods showed population growth and an increase in occupied households, suggesting intense territorial expansion. The genus Bothrops spp was responsible for most cases of poisoning. About half of the victims received care within the ideal time frame for treatment, demonstrating that, although access to specialized care exists, there are still challenges in reducing response time and preventing cases.

Downloads

Download data is not yet available.

References

1. Chippaux, J. P., Massougbodji, A., & Habib, A. G. (2019). The WHO strategy for prevention and control of snakebite envenoming: A sub-Saharan Africa plan. Journal of Venomous Animals and Toxins Including Tropical Diseases, 25.

2. Schneider, M. C., [et al.]. (2021). Overview of snakebite in Brazil: Possible drivers and a tool for risk mapping. PLoS Neglected Tropical Diseases, 15, 1–18.

3. Minghui, R., Malecela, M. N., Cooke, E., & Abela-Ridder, B. (2019). WHO’s snakebite envenoming strategy for prevention and control. The Lancet Global Health, 7, e837–e838. https://doi.org/10.1016/S2214-109X(19)30225-6

4. da Silva, W. R. G. B., [et al.]. (2023). Who are the most affected by Bothrops snakebite envenoming in Brazil? A clinical-epidemiological profile study among the regions of the country. PLoS Neglected Tropical Diseases, 17, e0011708.

5. Harrison, R. A., Casewell, N. R., Ainsworth, S. A., & Lalloo, D. G. (2019). The time is now: A call for action to translate recent momentum on tackling tropical snakebite into sustained benefit for victims. Transactions of the Royal Society of Tropical Medicine and Hygiene, 113, 834–837. https://doi.org/10.1093/trstmh/try134

6. Qamruddin, R. M., [et al.]. (2023). Frequency, geographical distribution and outcomes of pit viper bites in Malaysia consulted to Remote Envenomation Consultancy Services (RECS) from 2017 to 2020. PLoS Neglected Tropical Diseases, 17.

7. Castro-Pinheiro, C., [et al.]. (2024). Effect of seaweed-derived fucoidans from Undaria pinnatifida and Fucus vesiculosus on coagulant, proteolytic, and phospholipase A2 activities of snake Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. Toxins, 16.

8. World Health Organization. (2025). Snakebite. https://www.who.int/health-topics/snakebite#tab=tab_1

9. Dossou, A. J., Fandohan, A. B., Omara, T., & Chippaux, J. P. (2024). Comprehensive review of epidemiology and treatment of snakebite envenomation in West Africa: Case of Benin. Journal of Tropical Medicine, 2024, 10 pages.

10. da Silva, F. F. B., Moura, T. de A., Siqueira-Silva, T., Gutiérrez, J. M., & Martinez, P. A. (2024). Predicting the drivers of Bothrops snakebite incidence across Brazil: A spatial analysis. Toxicon, 250, 108107.

11. Gutiérrez, J. M. (2020). Snakebite envenoming from an Ecohealth perspective. Toxicon X, 7.

12. World Health Assembly. (2018). Addressing the burden of snakebite envenoming. 17, 24–26.

13. Takayasu, B. S., Rodrigues, S. S., Madureira Trufen, C. E., Machado-Santelli, G. M., & Onuki, J. (2023). Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays. Heliyon, 9, 2405–8440.

14. Mise, Y. F., Lira-da-Silva, R. M., & Carvalho, F. M. (2019). Fatal snakebite envenoming and agricultural work in Brazil: A case–control study. American Journal of Tropical Medicine and Hygiene, 100, 150–154.

15. World Health Organization. (2019). Snakebite: WHO targets 50% reduction in deaths and disabilities. https://www.who.int/news/item/06-05-2019-snakebite-who-targets-50-reduction-in-deaths-and-disabilities

16. Longbottom, J., [et al.]. (2018). Vulnerability to snakebite envenoming: A global mapping of hotspots. The Lancet, 392, 673–684.

17. Collinson, S., Lamb, T., Cardoso, I. A., Diggle, P. J., & Lalloo, D. G. (2025). A systematic review of variables associated with snakebite risk in spatial and temporal analyses. Transactions of the Royal Society of Tropical Medicine and Hygiene, 119, 1084–1099.

18. Schneider, M. C., [et al.]. (2021). Snakebites in rural areas of Brazil by race: Indigenous the most exposed group. International Journal of Environmental Research and Public Health, 18.

19. Ministério da Saúde. (2025). Portal SINAN. https://portalsinan.saude.gov.br/

20. Russell, J. J., Schoenbrunner, A., & Janis, J. E. (2021). Snake bite management: A scoping review of the literature. Plastic and Reconstructive Surgery - Global Open, 9, e3506. https://doi.org/10.1097/GOX.0000000000003506

21. Isbister, G. K. (2023). Antivenom availability, delays and use in Australia. Toxicon X, 17, 100145.

22. Oliveira, I. C. da S. de, [et al.]. (2022). Biodiversidade de serpentes: Ferramentas educativas para a conservação das espécies. Research, Society and Development, 11, e67111334892.

23. Amorim, A. P. da C. F. de, & Santos, M. F. dos. (2023). Animais terrestres peçonhentos de importância médica no Brasil. In G. M. da Costa & IMEA (Eds.), Saúde: Pesquisa, tecnologia e aplicabilidade (Vol. 1). João Pessoa.

24. Duque, B. R., [et al.]. (2023). Venomous snakes of medical importance in the Brazilian state of Rio de Janeiro: Habitat and taxonomy against ophidism. Brazilian Journal of Biology, 83, e272811.

25. Amorim, A. P. da C. F. de, Santos, M. F. dos, & Amorim, J. F. de. (2025). Acidentes com animais peçonhentos e a importância das medidas protetivas: Um estudo no município de Três Rios de 2014 a 2023. Revista Foco, 18, e7586.

26. Ministério da Saúde. (2021). DATASUS - Ministério da Saúde. https://datasus.saude.gov.br/

27. Instituto Brasileiro de Geografia e Estatística. (2025). IBGE | Cidades@ | Rio de Janeiro | Rio de Janeiro | Panorama. https://cidades.ibge.gov.br/brasil/rj/rio-de-janeiro/panorama

28. DATARIO. (2025). Censo 2022: População e domicílios por bairros (dados preliminares). https://www.data.rio/datasets/fd354740f1934bf5bf8e9b0e2b509aa9_2/explore?showTable=true

29. Secretaria Municipal de Assistência Social e Direitos Humanos. (2025). Secretaria Municipal de Assistência Social e Direitos Humanos - R.J. https://desenvolvimentourbano.prefeitura.rio/estrutura-da-secretaria/subsecretaria-planejamento-urbano/coordenadoria-de-planejamento-local/

30. Luzardo, A. J. R., Filho, R. M. C., & Rubim, I. B. (2017). Análise espacial exploratória com o emprego do índice de Moran. GEOgraphia. https://www.periodicos.uff.br/geographia/article/view/13807/9007

31. Buzai, G. D., & Galbán, E. M. (2012). Estadística espacial: Fundamentos y aplicación con sistemas de información geográfica.

32. Fundação Nacional de Saúde. (2001). Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. Ministério da Saúde. https://doi.org/10.22278/2318-2660.1996.v1.n2.a1256

33. Filho, G. A. P., Vieira, W. L. S., & França, F. G. R. (2020). Serpentes de importância médica no Brasil.

34. Costa, M., Freire, E. M. X., & Campos, R. (2020). Serpentes da Caatinga: Prevenir. Sim; matar, não! (pp. 15–38). https://labherpeto.cb.ufrn.br/pdf/manual.pdf

35. Ministério da Saúde. (2022). Guia de vigilância em saúde (pp. 1019–1024). https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_5ed_rev_atual.pdf

36. Isaacson, J. E., [et al.]. (2023). Antivenom access impacts severity of Brazilian snakebite envenoming: A geographic information system analysis. PLoS Neglected Tropical Diseases, 17, 1/19.

37. Bravo-Vega, C., Santos-Vega, M., & Cordovez, J. M. (2022). Disentangling snakebite dynamics in Colombia: How does rainfall and temperature drive snakebite temporal patterns? PLoS Neglected Tropical Diseases, 16.

38. Wegermann, K., & Kettermann, B. J. (2020). O desmatamento da floresta amazônica e as consequências da fragmentação de habitats naturais: Como a degradação ambiental impulsiona o surgimento de zoonoses. https://doi.org/10.51162/brc.dev2020-00055

39. Garcia, L. C., Viana, J. N. L., & Lima, C. M. S. (2023). Gestão de risco, vulnerabilidade ambiental e a questão climática na gestão metropolitana. Cadernos Metrópole, 25, 875–897.

40. Prefeitura do Município do Rio de Janeiro. (2012). Corredores verdes. Relatório do Grupo de Trabalho (Resolução SMAC P no183 de 07.11.2011).

41. Kono, I. S., Pandolfi, V. C. F., Marchi, M. N. A. de, Freitas, N., & Freire, R. L. (2024). Unveiling the secrets of snakes: Analysis of environmental, socioeconomic, and spatial factors associated with snakebite risk in Paraná, Southern Brazil. Toxicon, 237, 107552.

42. Ediriweera, D. S., De Silva, T., Kasturiratne, A., De Silva, H. J., & Diggle, P. (2022). Geographically regulated designs of incidence surveys can match the precision of classical survey designs whilst requiring smaller sample sizes: The case of snakebite envenoming in Sri Lanka. BMJ Global Health, 7, 9500.

43. Ochoa, C., [et al.]. (2021). Estimating and predicting snakebite risk in the Terai region of Nepal through a high-resolution geospatial and One Health approach. Scientific Reports, 11, 23868.

44. Castro-Amorim, J., [et al.]. (2023). Catalytically active snake venom PLA2 enzymes: An overview of its elusive mechanisms of reaction. Journal of Medicinal Chemistry, 66, 5364–5376.

45. Fortes, I. de B., & Dias, J. M. de M. (2023). A importância da educação ambiental para a conscientização das populações no entorno de unidades de conservação: O caso do Parque Nacional da Restinga de Jurubatiba. Revista Brasileira de Educação Ambiental (RevBEA), 18, 148–170.

46. Oliveira, L. P. de, [et al.]. (2020). Snakebites in Rio Branco and surrounding region, Acre, western Brazilian Amazon. Revista da Sociedade Brasileira de Medicina Tropical, 53, 1–8.

47. Matos, R. R., & Ignotti, E. (2020). Incidence of venomous snakebite accidents by snake species in Brazilian biomes. Ciência & Saúde Coletiva, 25, 2837–2846.

48. Oliveira, N. da R., Silva, T. M., Sousa, A. C. da R., & Ferreira, K. K. da S. (2022). Epidemiologia de acidentes ofídicos no Brasil (2000–2018). https://editorarealize.com.br/editora/anais/conapesc/2022/TRABALHO_COMPLETO_EV177_MD1_ID1089_TB433_10082022145016.pdf

49. Souza, L. A. de, Silva, A. D., Chavaglia, S. R. R., Dutra, C. M., & Ferreira, L. A. (2021). Profile of snakebite victims reported in a public teaching hospital: A cross-sectional study. Revista da Escola de Enfermagem, 55, 1–7.

50. Tednes, M., & Slesinger, T. L. (2021). Evaluation and treatment of snake envenomations. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK553151/

51. Knudsen, C., [et al.]. (2021). Snakebite envenoming diagnosis and diagnostics. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.661457

52. Lee, S., Lee, J., & Min, K. D. (2025). Association between deforestation and the incidence of snakebites in South Korea. Animals, 15, 198.

53. Malhotra, A., [et al.]. (2021). Promoting co-existence between humans and venomous snakes through increasing the herpetological knowledge base. Toxicon X, 12, 100081.

Downloads

Published

2025-10-29

How to Cite

de Amorim, A. P. da C. F., Romero, L. S., dos Santos, M. F., Schneider, M. C., Nouér, S. A., & Igreja, R. P. (2025). SPATIAL AUTOCORRELATION OF SNAKEBITES IN THE MUNICIPALITY OF RIO DE JANEIRO, BRAZIL. Revista De Geopolítica, 16(5), e871. https://doi.org/10.56238/revgeov16n5-084