ANALYSIS OF THE RECOVERY OF A DEGRADED AREA THROUGH VEGETATION INDEX

Authors

  • Wesley dos Santos Carvalho
  • Marcos Vinicius Alves de Oliveira
  • Maria Eduarda Basílio de Ávila
  • Drielle de Carvalho Petuco
  • Paola Ferreira Guimarães Grau
  • Thiago Ferreira Diniz
  • Andressa Tognon
  • Denilson de Oliveira Guilherme

DOI:

https://doi.org/10.56238/revgeov16n5-128

Keywords:

Remote Sensing, Kruskal-Wallis, Mann-Kendall, NDVI, PRADA

Abstract

Anthropogenic processes can often result in damage to the environment, reducing some of its properties such as the quality or productive capacity of natural resources. The recovery process seeks to rehabilitate a given degraded area to some form of sustainable environmental use. Remote sensing is an economical way to map degraded areas and monitor the recovery process. In this context, this work analyzes the evolution of the Degraded or Altered Area Recovery Project (PRADA) of the Água Limpa Environmental Park located in Campo Grande/MS. To this end, a statistical analysis was carried out on two NDVI time series derived from the TERRA-ASTER and Landsat 5/8 Satellites using the non-parametric Kruskal-Wallis test to verify whether there is an annual variation in the NDVI, whether there was a variation between the previous period and subsequent to the implementation of PRADA. Subsequently, the Dunn-Bonferroni post-hoc test was applied to verify the paired difference between the groups. Finally, the Mann-Kendall test was applied to check whether there is a trend, whether positive or negative, in the series of NDVI tests. The results obtained show that there is variation over time in the NDVI of both series. It was also found that the NDVI values are statistically different when comparing the period before and after the implementation of PRADA. The Landsat 5/8 series had a positive trend in NDVI values, showing the increase in plant biomass in the recovery area.

Downloads

Download data is not yet available.

References

ALMEIDA, D. S. D. Recuperação ambiental da Mata Atlântica. 3. ed. [s.l.] EDITUS, 2016.

BERVEGLIERI, A. et al. Analysis of trends and changes in the successional trajectories of tropical forest using the Landsat NDVI time series. Remote Sensing Applications: Society and Environment, v. 24, p. 100622, 1 nov. 2021.

BUMA, B. Evaluating the utility and seasonality of NDVI values for assessing post-disturbance recovery in a subalpine forest. Environmental Monitoring and Assessment, v. 184, n. 6, p. 3849–3860, 1 jun. 2012.

ELLIOTT, A. C.; HYNAN, L. S. A SAS® macro implementation of a multiple comparison post hoc test for a Kruskal–Wallis analysis. Computer Methods and Programs in Biomedicine, v. 102, n. 1, p. 75–80, 1 abr. 2011.

FORKEL, M. et al. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing, v. 5, n. 5, p. 2113–2144, maio 2013.

GORELICK, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, Big Remotely Sensed Data: tools, applications and experiences. v. 202, p. 18–27, 1 dez. 2017.

KRUSKAL, W. H.; WALLIS, W. A. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, v. 47, n. 260, p. 583–621, 1 dez. 1952.

MANCINO, G. et al. Cross-Comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote Sensing, v. 12, n. 2, p. 291, jan. 2020.

MOHR, J. et al. Assessing the Within-Field Heterogeneity Using Rapid-Eye NDVI Time Series Data. Agriculture, v. 13, n. 5, p. 1029, maio 2023.

MONTANDON, L. M.; SMALL, E. E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, Remote Sensing Data Assimilation Special Issue. v. 112, n. 4, p. 1835–1845, 15 abr. 2008.

MPMS. MPMS e UEMS dão início a parceria que visa proteger os rios do Estado. Disponível em: <https://www.mpms.mp.br/noticias/2019/05/mpms-e-uems-dao-inicio-a-parceria-que-visa-proteger-os-rios-do-estado>. Acesso em: 22 dez. 2023.

PARK EMPREENDIMENTOS IMOBILIÁRIOS LTDA. PARQUE AMBIENTAL ÁGUA LIMPA: Programa de Recuperação de Áreas Degradadas. , 2016.

POMPA-GARCÍA, M. et al. NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand. Forests, v. 13, n. 11, p. 1901, nov. 2022.

ROUSE, J. W. et al. Monitoring vegetation systems in the Great Plains with ERTS. 1 jan. 1974. Disponível em: <https://ntrs.nasa.gov/citations/19740022614>. Acesso em: 19 nov. 2023

ROY, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, Landsat 8 Science Results. v. 185, p. 57–70, 1 nov. 2016.

SANTOS, G. L. DOS et al. Natural regeneration in anthropogenic environments due to agricultural use in the cerrado, Uberaba, MG, Brazil. Bioscience Journal, v. 33, n. 1, p. 169–176, 9 fev. 2017.

SCHOLZ, F. W.; STEPHENS, M. A. K-Sample Anderson–Darling Tests. Journal of the American Statistical Association, v. 82, n. 399, p. 918–924, 1 set. 1987.

SENF, C.; MÜLLER, J.; SEIDL, R. Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landscape Ecology, v. 34, n. 12, p. 2837–2850, 1 dez. 2019.

SILVA, L. A. Uma revisão de literatura sobre o índice de vegetação por diferença normalizada (NDVI) no monitoramento de áreas degradadas por empreendimentos minerários. Holos Environment, v. 20, n. 2, p. 198–213, 14 mar. 2020.

TÁVORA, B. E.; EGERT, R.; BELTRÃO, L. Aplicação do Índice de Vegetação por Diferenças Normalizadas na avaliação da recuperação de danos em áreas degradadas. Boletim Científico Escola Superior do Ministério Público da União, n. 35, p. 85–95, 30 dez. 2011.

VALLE JÚNIOR, R. F. DO et al. Diagnosis of degraded pastures using an improved NDVI-based remote sensing approach: An application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sensing Applications: Society and Environment, v. 14, p. 20–33, 1 abr. 2019.

YANG, Y. et al. Factors Affecting Long-Term Trends in Global NDVI. Forests, v. 10, n. 5, p. 372, maio 2019.

Published

2025-11-12

How to Cite

Carvalho, W. dos S., de Oliveira, M. V. A., de Ávila, M. E. B., Petuco, D. de C., Grau, P. F. G., Diniz, T. F., Tognon, A., & Guilherme, D. de O. (2025). ANALYSIS OF THE RECOVERY OF A DEGRADED AREA THROUGH VEGETATION INDEX. Revista De Geopolítica, 16(5), e940. https://doi.org/10.56238/revgeov16n5-128