MONITOREO EN TIEMPO REAL DE LA CALIDAD DE AGUAS SUPERFICIALES: REVISIÓN Y APLICACIÓN EN LA GESTIÓN DE RECURSOS HÍDRICOS
DOI:
https://doi.org/10.56238/revgeov16n5-227Palabras clave:
Monitoreo en Tiempo Real, Calidad del Agua, Calibración, Gestión de Recursos Hídricos, Sensores IoTResumen
El monitoreo en tiempo real de la calidad del agua se ha mostrado como una herramienta esencial para fortalecer la gobernanza hídrica y mejorar las estrategias de gestión de los recursos hídricos. Este artículo presenta una revisión sistemática sobre las prácticas de monitoreo automatizado en distintos países, analizando metodologías de recolección, calibración y tratamiento de datos. Se realizaron búsquedas en bases científicas y en portales de instituciones gubernamentales, con énfasis en experiencias de Estados Unidos, Canadá, la Unión Europea, Australia, Singapur y Brasil. Se observó que los países analizados poseen diferentes niveles de madurez tecnológica, siendo que los sistemas más avanzados integran mediciones en tiempo real con modelos de predicción y alertas automáticas. En Brasil se identificaron avances puntuales, pero aún existe ausencia de protocolos nacionales de calibración e integración de datos. Se concluye que fortalecer la infraestructura de monitoreo y adoptar protocolos estandarizados es fundamental para ampliar la confiabilidad de la información y respaldar decisiones más eficaces en la gestión de los recursos hídricos.
Descargas
Referencias
Abrajano, J., Cruz, M., & Santos, L. (2024). IoT-based water quality monitoring for remote communities. Environmental Monitoring and Assessment, 196, 122–137. https://doi.org/10.1007/s10661-024-12345-6
Agência Nacional de Águas e Saneamento Básico (ANA). (2024). HidroWeb: Hydrological Information System. Brasília: ANA. Retrieved May 18, 2025, from https://www.snirh.gov.br/hidroweb
Aira, R., Olivares, P., & Delicado, J. (2024). SpectroGLY: A low-cost glyphosate detection system for real-time monitoring. Journal of Water Research Technology, 45, 201–213. https://doi.org/10.1016/j.jwrt.2024.01.010
Agência Nacional de Águas e Saneamento Básico (ANA). (2021). Water quality monitoring in the Paraíba do Sul River basin. Brasília: ANA. Retrieved August 16, 2025, from https://www.gov.br/ana
Agência Nacional de Águas e Saneamento Básico (ANA). (2022). National Water Quality Monitoring Network: 2022 report. Brasília: ANA.
Australian Bureau of Meteorology. (2023). Water Data Online. Melbourne: BoM. Retrieved May 18, 2025, from http://www.bom.gov.au/waterdata
Branco, S. M. (1986). Applied Hydrology. São Paulo: Edusp.
Brazil. (1997). Law No. 9,433, of January 8, 1997. Establishes the National Water Resources Policy. Official Gazette of the Union, Brasília.
CETESB – Companhia Ambiental do Estado de São Paulo. (2023). Report on the quality of inland waters in the State of São Paulo 2023. São Paulo: CETESB.
Conselho Nacional do Meio Ambiente (CONAMA). (2005). Resolution No. 357, March 17, 2005. Provides for classification of water bodies. Official Gazette of the Union, Brasília.
Conselho Nacional do Meio Ambiente (CONAMA). (2011). Resolution No. 430, May 13, 2011. Provides for effluent discharge conditions. Official Gazette of the Union, Brasília.
CSIRO. (2024). AquaWatch: Water quality prediction system. Canberra: CSIRO.
Environment and Climate Change Canada (ECCC). (2023). Real-time hydrometric data. Ottawa: ECCC. Retrieved May 18, 2025, from https://wateroffice.ec.gc.ca
Environmental Protection Agency (EPA). (2023). Water Quality Exchange (WQX). Washington, DC: EPA. Retrieved May 18, 2025, from https://www.epa.gov/waterdata/water-quality-data-wqx
European Environment Agency (EEA). (2024). Water Information System for Europe (WISE). Copenhagen: EEA. Retrieved May 18, 2025, from https://water.europa.eu
European Parliament. (2000). Directive 2000/60/EC. Official Journal of the European Communities, L 327, 1–73.
INEA – Instituto Estadual do Ambiente. (2022). Water quality monitoring report – Paraíba do Sul River basin (RJ). Rio de Janeiro: INEA.
INEA - Instituto Estadual do Ambiente. (2024). Water Quality Monitoring Network – RMQA. Rio de Janeiro: INEA. Retrieved May 18, 2025, from https://www.inea.rj.gov.br
Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater–surface water interactions: A review. Hydrology and Earth System Sciences, 10(6), 873–887. https://doi.org/10.5194/hess-10-873-2006
Li, X., Zhang, Y., & Wang, J. (2021). Recent advances in nanosensors for water quality monitoring. TrAC Trends in Analytical Chemistry, 143, 116–127. https://doi.org/10.1016/j.trac.2021.116127
Ma, R., Yang, Y., & Zhou, J. (2022). Application of artificial intelligence in water quality monitoring: A review. Environmental Modelling & Software, 146, 105241. https://doi.org/10.1016/j.envsoft.2021.105241
Mancuso, M. (2004). Calibration and validation of multiparameter water quality sensors. Hydrological Sciences Journal, 49(3), 411–420. https://doi.org/10.1623/hysj.49.3.411.54466
NASA. (2023). Surface Water and Ocean Topography (SWOT) Mission. Retrieved August 16, 2025, from https://swot.jpl.nasa.gov
OECD – Organization for Economic Co-operation and Development. (2020). Water quality monitoring and assessment: International best practices. Paris: OECD Publishing.
PUB – Singapore’s National Water Agency. (2024). Smart Water Grid. Singapore: PUB. Retrieved May 18, 2025, from https://www.pub.gov.sg/smartwatergrid
SABESP – Companhia de Saneamento Básico do Estado de São Paulo. (2022). Integrated management of the Cantareira System: Real-time monitoring and water security. São Paulo: SABESP.
Smith, A., et al. (2021). Accuracy challenges in real-time water quality monitoring. Journal of Hydrology, 598, 126–134. https://doi.org/10.1016/j.jhydrol.2021.126134
United States Geological Survey (USGS). (2024). National Water Information System: Web Interface. Reston: USGS. Retrieved May 18, 2025, from https://waterdata.usgs.gov/nwis
Wu, J., et al. (2020). Advances in real-time water quality monitoring networks. Water Research, 185, 116–128. https://doi.org/10.1016/j.watres.2020.116128
Yap, C. H., & Low, K. S. (2021). Sustainable urban water management in Singapore: Water reuse and smart water grid. Water Practice and Technology, 16(2), 511–522. https://doi.org/10.2166/wpt.2021.033
Zhang, L., et al. (2021). Hydrobio models for real-time algal bloom prediction. Ecological Modelling, 459, 109–121. https://doi.org/10.1016/j.ecolmodel.2021.109121