VENTANAS ARTIFICIALES E ILUMINACIÓN CENTRADA EN EL SER HUMANO: ESTUDIO DE CASO EN OFICINAS SIN ILUMINACIÓN NATURAL

Autores/as

  • Cristiane Martins Baltar Pereira
  • Paulo Sergio Scarazzato

DOI:

https://doi.org/10.56238/revgeov17n1-052

Palabras clave:

Iluminación Circadiana, Ventanas Falsas, Iluminación Centrada en el Ser Humano, Confort Visual, Salud

Resumen

Los entornos de trabajo sin acceso a iluminación natural dependen de la iluminación eléctrica para satisfacer las demandas visuales y no visuales de los usuarios, condición que puede comprometer el confort, el bienestar y la salud. Tradicionalmente, el diseño de iluminación se ha orientado por criterios fotópicos asociados al rendimiento visual. Sin embargo, las investigaciones en iluminación centrada en el ser humano han demostrado que la luz también influye en el sistema no visual, afectando el ritmo circadiano, el estado de alerta, el estado de ánimo y la percepción de bienestar. La insuficiencia de estímulos luminosos adecuados para este sistema puede dar lugar a la condición conocida como “oscuridad biológica”, común en ambientes cerrados. En este contexto, este estudio analiza el potencial contributivo de sistemas artificiales de iluminación natural, o ventanas falsas, en oficinas sin acceso a luz natural. Se adoptó un estudio de caso exploratorio que integró simulaciones computacionales de iluminación, mediciones de parámetros fotópicos y melanópicos y la aplicación del cuestionario de bienestar WHO-5 antes de la instalación del sistema y tras un período de uso de la ventana falsa. Los resultados indicaron que la combinación de la iluminación artificial existente con la ventana falsa promovió un aumento de la iluminancia vertical a nivel de los ojos y mejoras en los indicadores de estimulación circadiana, además de un incremento estadísticamente significativo en los índices de bienestar percibido. Los hallazgos sugieren asociaciones relevantes entre las condiciones luminosas analizadas y el bienestar de los usuarios, contribuyendo al debate sobre estrategias de iluminación centrada en el ser humano y a la comprensión de las potencialidades y limitaciones de las ventanas falsas en entornos de trabajo sin ventanas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ABNT - Associação Brasileira de normas técnicas. ABNT NBR ISSO/CIE 8995-1: Iluminação de ambientes de trabalho, Parte 1: Interior, 2013. Rio de Janeiro: ABNT, 2013.46p.

ACOSTA, I.; LESLIE, RP; FIGUEIRO, MG. Analysis of circadian stimulus allowed by daylighting in hospital rooms. Lighting Research & Technology, v. 49, n. 1, p. 49–61, fev. 2015. DOI: 10.1177/1477153515592948. Disponível em: https://journals.sagepub.com/doi/10.1177/1477153515592948?utm. Acesso em:8 jan.2025

AIRES M. Human lighting demands : healthy lighting in an office environment. 2005. 106 p. Tese Doutorado—Eindhoven: Technische Universiteit Eindhoven, 2005. DOI: DOI: 10.6100/IR594257. Acesso em: 10 jan. 2025

AIRES. M, Mangkuto. R. A, Loenen E. J. V. ,. Hensen. JLM. Simulation of virtual natural lighting solutions with a simplified view. Lighting Res. Technol, v. 46, n. 2, p. 198–218, 2014, abr. 2014. DOI: 10.1177/1477153513476875. Disponível em: https://journals.sagepub.com/doi/10.1177/1477153513476875?utm. Acesso em: 6 mar.2025

BOYCE, Peter R. Human factors in lighting. 3. ed. Boca Raton: CRC Press, 2014. Disponível em: < https://www.researchgate.net/publication/328250960_Human_factors_in_lighting_third_edition > Acesso em: 02.nov.2025

CAJOCHEN, C. ;. FREYBURGER, M. ;. BASISHVILI, T. ;. GARBAZZA, C. ;. RUDZIK, F. ;. RENZ, C. ;. KOBAYASHI, K. ;. SHIRAKAWA, Y. ;. STEFANI, O. ;. WEIBEL, J. Effect of daylight LED on visual comfort, melatonin, mood, waking performance and sleep. Lighting Research & Technology, v. 51, n. 7, p. 1044–1062, 2019. DOI: 10.1177/1477153519828419. Disponível em: https://edoc.unibas.ch/entities/publication/425d1859-104e-48d0-9c7e-024fe04fa65d?utm. Acesso em: 15 abr. 2025

CIE – Internacional commission on illumination. User Guide to the -opicToolbox for implementing CIE S 026/E:2018. CIE Division 6, v. 1.049a. 2020.

CIE – Commission Internationale de l´éclairage. CIE S 026/2018: CIE System for Metrology of Optical Radiation for Iprgc-Influenced Responses to light, 2018. Vienna: CIE, 2018, 32p.

DUMITRIU, S.; BOCEAN, C.G.; VARZARU, A.A.; AL-FLOAREI, A.T.; SPERDEA, N.M.; POPESCU,F.L.; BALOI, I.C. The Role of the Workplace Environment in Shaping Employees’ Well-Being. Sustainability, v. 17, n. 6, p. 2613, 16 mar. 2025. DOI: 10.3390/su17062613. Disponível em: https://www.mdpi.com/2071-1050/17/6/2613?utm Acesso em: jun. 2025

ENEZI, M. ;. THIEME, C. D. ;. BLANCHARD, J. F. ;. FIGUEIRO, M. B. D. ;. REA, M. Circadian photoreception: The impact of light on human circadian rhythms. Sleep Medicine Reviews, v. 15, n. 4, p. 281–287, 2011. DOI: 10.1016/j.smrv.2010.08.003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1087079210000936?via%3Dihub. Acesso em: fev. 2025

FIGUEIRO, M.G.; REA,M.S; BOYCE,P.;WHITE, R; KOLBERG,K. Circadian-effective light and its impact on alertness in office works. Light Res Technol, v.51, n.2, p.171-183, 219. DOI: https://doi.org/10.1177/1477153517750006. Disponível em: https://journals.sagepub.com/doi/10.1177/1477153517750006. Acesso em: fev. 2025

FOSTER, R. G. Bright blue times. Nature, v. 433, p. 698-699, 2005. DOI: 10.1038/433698a. Disponível em: https://www.nature.com/articles/433698a. Acesso em: fev. 2025

FRIEDMAN, B.; KAHN JR., P. H.; GILL, B.; HAGMAN, J.; SEVERSON, R. L.; FREIER, N. G.; FELDMAN, E. N.; CARRERE, S.; STOLYAR, A. A plasma display window—the shifting baseline problem in a technologically mediated natural world. Journal of Environmental Psychology, Amsterdam, v. 28, n. 2, p. 192–199, 2008. DOI: 10.1016/j.jenvp.2007.10.008. Acesso em: 16 jan. 2025.

GU J, LI, N. YONGGA A. Influence of artificial windows in simulated underground spaces on thermal and light perceptions, physiological and work performance. Energy and Buildings, v. 297, p. 113440, 2023. DOI: https://doi.org/10.1016/j.enbuild.2023.113440. Disponíve em: https://www.sciencedirect.com/science/article/abs/pii/S0378778823006709?via%3Dihub. Acesso em: jun. 2025

HELLINGA, H. I.. Daylight and View The Influence of Windows on the Visual Quality of Indoor Spaces, 2013. 353 f. Tese (Doutorado em Arquitetura) – Netherlands: e Technische Universiteit Delft, 2013. DOI: https://doi.org/10.4233/uuid:2daeb534-9572-4c85-bf8f-308f3f6825fd Disponível em: https://repository.tudelft.nl/record/uuid:2daeb534-9572-4c85-bf8f-308f3f6825fd. Acesso em: mar. 2025

KAPLAN, R. The Nature of the View from Home: Psychological Benefits. Environment and Behavior, v. 33, n. 4, 1995. DOI: https://doi.org/10.1177/00139160121973115

LI, H.; Tian. Z, Zhang S, Zou. M. Using artificial windows to influence occupants’ mood and task performance in windowless spaces - A review. ScienceDirect, p. 111655, 2024. DOI: https://doi.org/10.1016/j.enbuild.2024.111655.

LUCAS, R. J.; Peirson, S. N.; BERSON, D. M.; BROWN, T.M.; COOPER, H. M.; CZEISLER, C.A.; FIGUEIRO, M.G.; GAMLIN, P. D.; LOCKLEY, S. W.; O'HAGAN, J. B.; PRICE, L. L. A.; PROVENCIO, I.; SKENE, D. J.; BRAINARD, G. C. Measuring and using light in the melanopsin age. Trends in Neurosciences, v. 37, n. 1, p. 1–9, jan. 2014. DOI: https://doi.org/10.1016/j.tins.2013.10.004.

MANGKUTO, R. A.; OCHOA M.; Carlos E.; ARIES, M. B. C.; LOENEN, EVERT J.V.; HENSEN, J. L. M. Review of Modelling Approaches for Developing Virtual Natural Lighting SolutionsIBPSA Australasia & AIRAH. Sydney, Austrália, p. 2643–2650, 14–16 nov. 2011 Disponível em: https://pure.tue.nl/ws/files/3612528/731202129839938.pdf. Acesso em: 8 out. 2025.

PEETERS, S. The positive impacto f NatureConnect in meeting rooms with no natural daylight. 2023. Disponível em: https://www.assets.signify.com/is/content/Signify/Assets/signify/global/20240425-study-2-the-positive-impact-of-natureconnect-in-meeting-rooms-with-no-natural-daylight.pdf. Acesso em: 8 out. 2024.

RADIKOVIC, A. S.; LEGGETT, J. J.; KEYSER, J.; ULRICH, R. S. Artificial window view of nature. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Portland, Oregon, EUA, 2–7 abr. 2005. p. 1087–1090. DOI: https://doi.org/10.1145/1056808.1057075.

REA, M. S. ;. FIGUEIRO, M. G. ;. BIERMAN, A. ;. HAMNER, R. Modellign the spectral sensitivity of the human circadian system . Light Res Technol, v. 44, n. 4, p. 386–396, 2011. DOI: https://doi.org/10.1177/1477153511430474

REA, M. S.; FIGUEIRO, M. G.; BULLOUGH, J. D. Circadian photobiology: An emerging framework for lighting practice and research. Lighting Research & Technology, v. 34, n. 3, p. 177–187, 2002. DOI: https://doi.org/10.1191/1365782802lt057oa

REA, Mark S. et al. A model of phototransduction by the human circadian system. Brain Research Reviews, v. 50, n. 2, p. 213–228, dez. 2005. DOI: https://doi.org/10.1016/j.brainresrev.2005.07.002

RODRIGUEZ, F.; GARCIA, V; ALLAN, G.; ISOARDI, G. Subjective responses toward daylight changes in window views: Assessing dynamic environmental attributes in an immersive experiment. Sciencedirect, v. 195, p. 107720, 2021. DOI: https://doi.org/10.1016/j.buildenv.2021.107720

SOUZA, C. M. ;. HIDALGO, M. P. L. World Health Organization 5-item well-being index: validation of the Brazilian Portuguese version. European Archives of Psychiatry and Clinical Neuroscience. Heidelberg, v. 262, n. 3, p. 239–244, 2012. DOI: 10.1007/s00406-011-0260-x

SUK, J. Y. Luminance and vertical eye illuminance thresholds for occupants visual comfort in daylit office environments. Building and Environment, v. 148, p. 107–115, 15 jan. 2019. DOI: 10.1016/j.buildenv.2018.11.002.

TANG, B.; ZHANG, X.; ZHANG, X. Comparative study on human responses in isolated and confined offices with an artificial window. Building and Environment, v. 265, 1 nov. 2024. . DOI: 10.1016/j.buildenv.2024.112016

VEITCH, J. A. Psychological processes influencing lighting quality. Journal of the Illuminating Engineering Society, v. 30, n. 1, p. 124-142, 2001. DOI: 10.1080/00994480.2001.10748782.

VEITCH, J. A. Light, lighting, and health: Issues for consideration. LEUKOS - Journal of Illuminating Engineering Society of North America, v. 2, n. 2, p. 85-96, 2005. DOI: 10.1080/15502724.2005.10748057.

VEITCH JENNIFER A., C. K. E. ,. D.C. L. Open-Plan Office Density and Environmental Satisfaction. IRC, National Research Council Canada, p. 2–22, 2002.

YASUKOUCHI, A. ;. MAEDA, T. ;. HARA, K. ;. FURUUNE, H. Non-visual effects of diurnal exposure to an artificial skylight, including nocturnal melatonin suppression. Journal of Physiological Anthropology, v. 38, n. 1, p. 10, 2019. DOI: 10.1186/s40101-019-0191-2.

WELL BUILDING INSTITUTE. WELL Building Standard: versão V2 Q1-Q3 de 2023. [S. l.]: WELL, 2023. Disponível em: https://v2.wellcertified.com/en/wellv2-23q1q2q3/light/feature/3. Acesso em: 8 jan. 2025.

ZHANG, Y.; TANG, Y.; WANG., X., TAN, Y.; The Effects of Natural Window Views in Classrooms on College Students’ Mood and Learning Efficiency. Buildings, v. 14, n. 6, 1 jun. 2024. DOI: 10.3390/buildings14061557.

KIM, J.; TZEMPELIKOS, A. Performance evaluation of non-intrusive luminance mapping towards human-centered daylighting control. Building and Environment, Oxford, v. 207, p. 108430, 2022. DOI: 10.1016/j.buildenv.2021.108430.

Publicado

2026-01-12

Cómo citar

Pereira, C. M. B., & Scarazzato, P. S. (2026). VENTANAS ARTIFICIALES E ILUMINACIÓN CENTRADA EN EL SER HUMANO: ESTUDIO DE CASO EN OFICINAS SIN ILUMINACIÓN NATURAL. Revista De Geopolítica, 17(1), e1290. https://doi.org/10.56238/revgeov17n1-052