FLUJOS DE CH₄ Y N₂O EN DIFERENTES USOS DEL SUELO EN EL OESTE DE PARÁ: EFECTOS MICROCLIMÁTICOS Y BIOGEOQUÍMICOS DEL SUELO
DOI:
https://doi.org/10.56238/revgeov17n2-019Palabras clave:
Gases Traza, Uso del Suelo, Metano, Óxido Nitroso, AmazoníaResumen
Los cambios en el uso de la tierra en la Amazonía alteran profundamente los controles biogeoquímicos que regulan los flujos de metano (CH₄) y óxido nitroso (N₂O) entre el suelo y la atmósfera. Este estudio cuantificó los flujos de estos gases en cuatro tipos de cobertura del suelo —bosque, bosque secundario, pastizal y agricultura (soja bajo siembra directa y convencional)— en microcuencas de los municipios de Santarém y Belterra, en el oeste de Pará. Las mediciones se realizaron con cámaras estáticas manuales distribuidas en transectos de 300 m, acompañadas de variables ambientales como temperatura del aire y del suelo, humedad gravimétrica y WFPS. Los resultados mostraron que las áreas de bosque secundario presentaron temperaturas más bajas y mayor estabilidad microclimática, reflejando una menor emisión y una mayor propensión a la oxidación de CH₄. En contraste, las áreas agrícolas y de pastizal exhibieron una mayor variabilidad térmica y mayores flujos de N₂O y CH₄, especialmente durante la cosecha de la soja, período marcado por la acumulación de residuos vegetales y la intensificación de la actividad microbiana. Las mayores emisiones de N₂O se asociaron a pulsos posdisturbio y a fases fenológicas específicas del cultivo. Estos hallazgos demuestran que la conversión forestal modifica la función ecológica del suelo, transformando ambientes originalmente sumideros en potenciales fuentes de gases traza. El estudio contribuye al entendimiento de los mecanismos reguladores de los flujos de CH₄ y N₂O en agroecosistemas amazónicos y proporciona insumos para estrategias de manejo capaces de mitigar emisiones en sistemas agrícolas tropicales.
Descargas
Referencias
ALVES, K. J. et al. Methanogenic communities and methane emissions from enrichments of Brazilian Amazonia soils under land-use change. Microbiological Research, v. 265, art. 127178, 2022. DOI: 10.1016/j.micres.2022.127178.
ARIAS-NAVARRO, C. et al. Spatial heterogeneity of soil greenhouse gas fluxes and implications for sampling design: insights from static chamber studies. Agriculture, Ecosystems & Environment, 2021. Disponível em: www2.cifor.org.
BAKER, J. C. A. et al. Environmental controls on greenhouse gas fluxes. Environmental Research Letters, v. 20, art. 043001, 2025. DOI: 10.1088/1748-9326/adb984.
CHARTERIS, A. F.; CHADWICK, D. R.; THORMAN, R. E.; VALLEJO, A.; DE KLEIN, C. A. M.; ROCHETTE, P.; CÁRDENAS, L. M. Global Research Alliance N₂O chamber methodology guidelines: recommendations for deployment and accounting for sources of variability. Journal of Environmental Quality, v. 49, n. 5, p. 1092–1109, 2020. DOI: 10.1002/jeq2.20126.
CUGLER, G.; FIGUEIREDO, V.; GAUCI, V.; STAUFFER, T.; PEIXOTO, R. B.; RAO PANGALA, S.; ENRICH-PRAST, A. Analysis of CH₄ and N₂O fluxes in the dry season: influence of soils and vegetation types in the Pantanal. Forests, v. 15, n. 12, art. 2224, 2024. DOI: 10.3390/f15122224.
FERLAND, D. et al. Improved nitrogen fertilizer management reduces nitrous oxide emissions. Science of the Total Environment, 2024. DOI: 10.1016/j.scitotenv.2024.xxx.
GATTI, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature, v. 595, n. 7867, p. 388–393, 2021. DOI: 10.1038/s41586-021-03629-6.
HAO, Y.; MAO, J.; BACHMANN, C. M. et al. Soil moisture controls over carbon sequestration and greenhouse gas emissions: a review. npj Climate and Atmospheric Science, v. 8, art. 16, 2025. DOI: 10.1038/s41612-024-00888-8.
HUDDELL, A. et al. Nitric and nitrous oxide fluxes from intensifying crop systems in the southern Amazon. Relatório técnico. Belém: IPAM Amazônia, 2021.
IBAMA – INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS. Floresta Nacional do Tapajós: plano de manejo. Belterra, PA: IBAMA, 2004. 373 p.
INMET – INSTITUTO NACIONAL DE METEOROLOGIA. Normas climatológicas. Brasília: INMET, 2010.
ISMAEEL, A.; TAI, A. P. K.; SANTOS, E. G. et al. Patterns of tropical forest understory temperatures. Nature Communications, v. 15, art. 549, 2024. DOI: 10.1038/s41467-024-44734-0.
KHAN, M. A. W. et al. Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. FEMS Microbiology Ecology, v. 95, n. 2, art. fiy230, 2019. DOI: 10.1093/femsec/fiy230.
KROEGER, M. E. et al. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. The ISME Journal, v. 15, n. 3, p. 658–672, 2021. DOI: 10.1038/s41396-020-00804-x.
LANG, R. et al. Mechanisms controlling methane uptake in tropical soil profiles. Soil Biology and Biochemistry, v. 149, art. 107944, 2020.
LI, L.; AWADA, T.; ZHANG, Y.; PAUSTIAN, K. Global land use change and its impact on greenhouse gas emissions. Global Change Biology, v. 30, n. 12, e17604, 2024. DOI: 10.1111/gcb.17604.
LOBATO, K. B. M. et al. Balanço de energia em floresta, campo natural e área agrícola no município de Humaitá-AM. Ra’e Ga: O Espaço Geográfico em Análise, v. 60, p. 45–69, 2024. DOI: 10.5380/raega.v60i0.93097.
MARENGO, J. A. et al. Changes in climate and land use over the Amazon region. Frontiers in Earth Science, v. 6, 2018. DOI: 10.3389/feart.2018.00228.
MARTIN, S. T. Regeneration of secondary forest following anthropogenic disturbance from 1985 to 2021 for Amazonas, Brazil. Global Change Biology, v. 30, n. 10, e17514, 2024. DOI: 10.1111/gcb.17514.
MAZENGO, T. E. R. et al. Non-flow-through static (closed chamber) method for sampling of greenhouse gases. Frontiers in Agronomy, v. 6, art. 1464495, 2024.
MEYER, K. M. et al. Belowground changes to community structure alter methane-cycling dynamics in Amazonia. Environment International, v. 145, art. 106131, 2020. DOI: 10.1016/j.envint.2020.106131.
MEYER, K. M. et al. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms. Molecular Ecology, v. 26, n. 6, p. 1547–1556, 2017. DOI: 10.1111/mec.14011.
MORAES, L. M. et al. Soil greenhouse gas emissions under different land uses in the Eastern Amazon. Revista Agro@mbiente On-Line, v. 19, e8578, 2025. DOI: 10.18227/1982-8470ragro.v19i00.8578.
OLIVEIRA JÚNIOR, R. C. de; CORRÊA, J. R. V. Caracterização dos solos do município de Belterra, Estado do Pará. Belém: Embrapa Amazônia Oriental, 2001. 39 p. (Documentos/Embrapa Amazônia Oriental, n. 88).
POORTER, L. et al. Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences, v. 118, n. 49, e2003405118, 2021. DOI: 10.1073/pnas.2003405118.
PRODES/INPE. Projeto de Monitoramento do Desmatamento na Amazônia Legal. Relatório técnico. São José dos Campos: INPE, 2023.
SHI, Y.; WEI, X.; SHENG, L.; YANG, X. Effects of nitrogen fertilization on soil greenhouse gas emissions. Agronomy, v. 15, n. 1, art. 115, 2025. DOI: 10.3390/agronomy15010115.
SHIVRAN, M. et al. Differential influence of crop residue incorporation on methane production. The Journal of Agricultural Science, v. 161, n. 5, p. 669–677, 2023. DOI: 10.1017/S0021859623000631.
SILVA JUNIOR, C. A. d.; LIMA, M.; TEODORO, P. E.; OLIVEIRA JÚNIOR, J. F. d.; ROSSI, F. S.; FUNATSU, B. M.; BUTTURI, W.; LOURENÇONI, T.; KRAESKI, A.; PELISSARI, T. D.; MORATELLI, F. A.; ARVOR, D.; LUZ, I. M. d. S.; TEODORO, L. P. R.; DUBREUIL, V.; TEIXEIRA, V. M. (2022). Fires Drive Long Term Environmental Degradation in the Amazon Basin. Remote Sensing, v. 14, n. 2, p. 338. DOI: 10.3390/rs14020338.
SILVA, J. P.; LASSO, A.; LUBBERDING, H. J.; PEÑA, M. R.; GIJZEN, H. J. Biases in greenhouse gases static chamber measurements. Atmospheric Environment, v. 109, p. 130–138, 2015. DOI: 10.1016/j.atmosenv.2015.02.068.
SOUZA, L. F. de et al. Maintaining grass coverage increases methane uptake in Amazonian pasture soils. Science of the Total Environment, v. 838, art. 156225, 2022. DOI: 10.1016/j.scitotenv.2022.156225.
TERRABRASILIS/INPE – Instituto Nacional de Pesquisas Espaciais. Plataforma Terrabrasilis: dados do PRODES – monitoramento do desmatamento da Amazônia Legal. São José dos Campos: INPE, 2023. Disponível em: https://terrabrasilis.dpi.inpe.br/.
THILAKARATHNA, S. K. et al. Priming of soil organic matter and denitrification mediate N₂O production. Soil Biology and Biochemistry, v. 154, p. 108–118, 2021.
VENTURINI, A. M. et al. Increased soil moisture intensifies the impacts of forest-to-pasture conversion. Environmental Research, v. 212, art. 113139, 2022. DOI: 10.1016/j.envres.2022.113139.
WAGNER-RIDDLE, C.; CONGREVES, K. A.; ABALOS RODRIGUEZ, D.; BERG, A. A.; BROWN, S. E.; AMBADAN, J. T.; GAO, X.; TENUTA, M. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nature Geoscience, v. 10, n. 4, p. 279–283, 2017. DOI: 10.1038/ngeo2907.
WANG, C. et al. Factors that influence nitrous oxide emissions from agricultural soils. Agronomy, v. 11, n. 4, art. 770, 2021. DOI: 10.3390/agronomy11040770.
XIA, N. et al. Effects of nitrogen addition on soil methane uptake. Environmental Pollution, v. 264, art. 114751, 2020. DOI: 10.1016/j.envpol.2020.114751.
ZAMAN, M. et al. Methodology for measuring greenhouse gas emissions from agricultural soils. In: ZAMAN, M.; HENG, L.; MÜLLER, C. (org.). Measuring emission of agricultural greenhouse gases. Cham: Springer, 2021. DOI: 10.1007/978-3-030-55396-8_2.
ZHANG, Y. et al. Soil nitrogen transformation mechanisms under saturated conditions. Biology and Fertility of Soils, v. 54, p. 495–507, 2018. DOI: 10.1007/s00374-018-1276-7.
ZHENG, M. et al. Effects of nitrogen and phosphorus additions on soil methane uptake. Journal of Geophysical Research: Biogeosciences, v. 121, p. 3089–3100, 2016. DOI: 10.1002/2016JG003476.