ANÁLISIS DE MODELOS DE ESTIMACIÓN DE PRECIPITACIÓN UTILIZANDO SERIES DE TIEMPO: UN ANÁLISIS BIBLIOMÉTRICO

Autores/as

  • Jessica Almeida Monteiro Arruda
  • Rodrigo Nogueira de Vasconcelos
  • Rosângela Leal Santos

DOI:

https://doi.org/10.56238/revgeov16n5-046

Palabras clave:

Precipitación, Series Temporales, Modelización Hidrológica, Análisis Bibliométrico, Inteligencia Artificial, Cambio Climático

Resumen

Este estudio realiza un análisis bibliométrico de modelos de estimación de precipitación mediante series temporales, con el objetivo de identificar tendencias, métodos y contribuciones científicas de las últimas cuatro décadas. La investigación se justifica por la importancia de la precipitación como variable principal en la modelización hidrológica y la escasez de datos pluviométricos precisos, especialmente en regiones con alta variabilidad espacial y temporal. El trabajo busca mapear los principales modelos de estimación de precipitación, analizar su resolución espacial y temporal e identificar tendencias metodológicas e innovaciones en el campo. La metodología adoptada incluyó un enfoque bibliométrico, utilizando la base de datos Scopus para recopilar artículos científicos, seguido de análisis estadísticos y redes de coocurrencia de términos mediante el software VOSviewer. Se analizaron setenta y ocho artículos publicados entre 1982 y 2023, centrándose en el 40% más citado en cada década. Los resultados revelan una evolución significativa en la modelización de la precipitación, con la transición de métodos estadísticos simples a técnicas avanzadas como las redes neuronales artificiales (RNA) y el aprendizaje profundo (LSTM). La resolución espacial temporal y regional diaria predominó en los estudios, y la integración de datos satelitales y técnicas de inteligencia artificial (IA) se ha convertido en una tendencia dominante en la última década. Se concluye que los avances en la modelización de la precipitación tienen un impacto práctico significativo en la gestión de los recursos hídricos y la agricultura, contribuyendo a la predicción de eventos extremos y la adaptación al cambio climático.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ANTONINI, J. C. A.; SILVA, E. M.; OLIVEIRA, L. F. C.; SANO, E. E. Modelo matemático para estimativa da temperatura média diária do ar no Estado de Goiás. Pesquisa Agropecuária Brasileira, v. 44, n. 4, p. 331-338, 2009.

ARAI, H. et al. Estudo sobre a significância da precipitação na caracterização do clima regional. Revista de Climatologia, v. X, n. Y, p. 123-145, 2009.

ARNAUD, P.; LAVABRE, J. Coupled rainfall model and discharge model for flood frequency estimation. Water Resources Research, v. 38, n. 11, p. 1241, 2002.

BÁRDOSSY, A. Generating precipitation time series using simulated annealing. Water Resources Research, v. 34, n. 7, p. 1733-1741, 1998.

BARDOSSY, Andras; PLATE, Erich J. Modeling daily rainfall using a semi-Markov representation of circulation pattern occurrence. Journal of Hydrology, v. 122, n. 1-4, p. 33-47, 1991.

BERTONI, J. C.; TUCCI, C. E. M. Precipitação. In: TUCCI, C. E. M.; SILVEIRA, A. L. L. (Eds.). Hidrologia: ciência e aplicação. Porto Alegre: ABRH, 2009.

BOGÁRDI, János J.; DUCKSTEIN, Lucien; RUMAMBO, Omar H. Practical generation of synthetic rainfall event time series in a semi-arid climatic zone. Journal of Hydrology, v. 102, n. 1-4, p. 335-355, 1988.

BORSATO, V. A. A climatologia dinâmica e o ensino da geografia no segundo grau: uma aproximação ao problema. Revista GeoNotas, v. 4, n. 1, 2000. ISSN 1415-0646.

BUISHAND, T. A.; KLEIN TANK, A. M. G. Regression model for generating time series of daily precipitation amounts for climate change impact studies. Theoretical and Applied Climatology, v. 53, n. 1-3, p. 1-19, 1996.

BURTON, A.; FOWLER, H. J.; BLENKINSOP, S.; KILSBY, C. G. Downscaling transient climate change using a Neyman-Scott Rectangular Pulses stochastic rainfall model. Journal of Hydrology, v. 381, n. 1-2, p. 18-32, 2010.

BURTON, A.; GLENIS, V.; JONES, M. R.; KILSBY, C. G. Models of daily rainfall cross-correlation for the United Kingdom. Environmental Modelling & Software, v. 49, p. 22-33, 2013.

CAFÉ, L.; BRASCHER, M. Organização da informação e bibliometria. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação, Florianópolis, n. esp., p. 54-75, 1º sem. 2008.

CALLAU PODUJE, A. C.; HABERLANDT, U. Short time step continuous rainfall modeling and simulation of extreme events. Journal of Hydrology, v. 550, p. 324-336, 2017.

CARLETOO, C. Subcoberturas: aplicação de isolantes térmicos em sistemas de coberturas. 193 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2005.

CAVALCANTI, I. F. A.; FERREIRA, N. J.; SILVA, M. G. A. J.; DIAS, M. A. F. S. (Orgs.). Tempo e Clima no Brasil. São Paulo: Oficina de Textos, 2009. 459 p.

CHEN, C.; ZHANG, Q.; KASHANI, M. H.; DASH, S. S.; CHAU, K.-W. Forecast of rainfall distribution based on fixed sliding window long short-term memory. Water Resources Research, v. 58, n. 1, p. e2021WR031641, 2022.

CONWAY, D.; WILBY, R. L.; JONES, P. D. Precipitation and air flow indices over the British Isles. Climate Research, v. 5, n. 2, p. 169-185, 1996.

COWPERTWAIT, P. S. P. Further developments of the Neyman‐Scott clustered point process for modeling rainfall. Water Resources Research, v. 27, n. 7, p. 1431-1438, 1991.

DE CARVALHO, A. A.; DE A. MONTENEGRO, A. A.; DA SILVA, H. P.; DE MORAIS, J. E. F.; DA SILVA, T. G. F. Trends of rainfall and temperature in Northeast Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 24, n. 1, p. 15-23, 2020.

FORSYTHE, N.; FOWLER, H. J.; BLENKINSOP, S.; HARPHAM, C.; HASHMI, M. Z. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin. Journal of Hydrology, v. 517, p. 1019-1034, 2014.

FUNK, Chris; MICHAELSEN, Joel; VERDIN, Jim; ARTAN, Guleid; HUSAK, Greg; SENAY, Gabriel; GADAIN, Hussein; MAGADAZIRE, Tamuka. The collaborative historical African rainfall model: Description and evaluation. International Journal of Climatology, v. 23, n. 1, p. 47-66, 2003.

GAO, C.; BOOIJ, M. J.; XU, Y.-P. Development and hydrometeorological evaluation of a new stochastic daily rainfall model: Coupling Markov chain with rainfall event model. Journal of Hydrology, v. 588, p. 125337, 2020.

GUEDES, V. L. S.; BORSHIVER, S. Bibliometria: uma ferramenta estatística para a gestão da informação e do conhecimento. In: ENCONTRO NACIONAL DE CIÊNCIA DA INFORMAÇÃO, 6., 2005, Salvador. Anais [...]. Salvador: ENANCIB, 2005. p. 1-18.

HABERLANDT, U.; BELLI, A.; BÁRDOSSY, A. Statistical downscaling of precipitation using a stochastic rainfall model conditioned on circulation patterns - an evaluation of assumptions. International Journal of Climatology, v. 35, n. 2, p. 217-231, 2015.

HABERLANDT, U.; EBNER VON ESCHENBACH, A.-D.; BUCHWALD, I. A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrology and Earth System Sciences, v. 12, n. 6, p. 1353-1367, 2008.

HENLEY, B. J.; THYER, M. A.; KUCZERA, G.; FRANKS, S. W. Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data. Water Resources Research, v. 47, n. 10, p. W00H10, 2011.

JOB, I. Bibliometria aplicada aos estudos do campo da Educação Física: confiabilidade, qualidade e relevância nas publicações. Motrivivência, Florianópolis, v. 30, n. 54, p. 18-34, 2018.

JOTHITYANGKOON, Chatchai; SIVAPALAN, Murugesu; VINEY, Neil R. Tests of a space-time model of daily rainfall in southwestern Australia based on nonhomogeneous random cascades. Water Resources Research, v. 36, n. 1, p. 29-42, 2000.

KHAZAEI, M. R. A robust method to develop future rainfall IDF curves under climate change condition in two major basins of Iran. Theoretical and Applied Climatology, v. 144, n. 1-2, p. 1-15, 2021.

KIM, D.; KWON, H.-H.; LEE, S.-O.; KIM, S. Regionalization of the Modified Bartlett–Lewis rectangular pulse stochastic rainfall model across the Korean Peninsula. Journal of Hydro-environment Research, v. 8, n. 4, p. 317-328, 2014.

KIM, D.; OLIVERA, F.; CHO, H.; SOCOLOFSKY, S. A. Regionalization of the modified Bartlett-Lewis rectangular pulse stochastic rainfall model. Terrestrial, Atmospheric and Oceanic Sciences, v. 23, n. 6, p. 631-642, 2012.

KING ABDUL AZIZ UNIVERSITY, Jeddah, Saudi Arabia. Time series analysis model for rainfall data in Jordan: Case study for using time series analysis. American Journal of Environmental Sciences, v. 5, n. 5, p. 599-604, 2009.

KOUTSOYIANNIS, D.; ONOF, C.; WHEATER, H. S. Multivariate rainfall disaggregation at a fine timescale. Water Resources Research, v. 39, n. 7, p. 1173, 2003.

LI, Zhi; BRISSETTE, Francois; CHEN, Jie. Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrological Processes, v. 27, n. 26, p. 3718-3729, 2013.

LUCENA, D. B. Impacto dos Oceanos Pacífico e Atlântico no Clima do Nordeste do Brasil. 225 p. Tese (Doutorado em Meteorologia) – Universidade Federal de Campina Grande, Campina Grande, PB, 2008.

LV, Aifeng; ZHOU, Lei. A rainfall model based on a Geographically Weighted Regression algorithm for rainfall estimations over the arid Qaidam Basin in China. Remote Sensing, v. 8, n. 4, p. 311, 2016.

MONTEIRO, C. A. F. Clima e Excepcionalismo: Conjecturas sobre o desempenho da atmosfera como fenômeno geográfico. Florianópolis: UFSC, 1991.

ÖZMEN, A.; BATMAZ, İ.; WEBER, G.-W. Precipitation Modeling by Polyhedral RCMARS and Comparison with MARS and CMARS. Environmental Modeling & Assessment, v. 19, n. 5, p. 425-435, 2014.

PAPALEXIOU, S. M. Rainfall Generation Revisited: Introducing CoSMoS-2s and Advancing Copula-Based Intermittent Time Series Modeling. Water Resources Research, v. 58, n. 1, p. e2021WR031641, 2022.

PEDRO JÚNIOR, M. J.; SENTELHAS, P. C.; POMMER, C. V.; MARTINS, F. P. Determinação da temperatura-base, graus-dia e índice biometeorológico para a videira 'Niagara Rosada'. Revista Brasileira de Agrometeorologia, Santa Maria, v. 2, p. 51-56, 1994.

SANTANA, M. M. M.; MARIANO-NETO, E.; DE VASCONCELOS, R.; DODONOV, P. Mapping the research history, collaborations and trends of remote sensing in fire ecology. Scientometrics, v. 126, p. 1-20, 2021. DOI: 10.1007/s11192-020-03805-x.

SANTOS, Ananias Francisco dos; SANTOS, Claudiane da Silva dos; GOMES, Angelica da Silva. Análise bibliométrica das tendências e avanços nas pesquisas em sustentabilidade no período de 2019 a 2023. Sinop: Universidade do Estado de Mato Grosso – UNEMAT, Campus Universitário de Sinop, 2023.

SANTOS, I.; FILL, H. D.; SUGAI, M. R. V. B.; BUBA, H.; KISHI, R. T.; MARONE, E.; LAUTERT, L. F. C. Hidrometria Aplicada. Curitiba: Editora do Instituto de Tecnologia para o Desenvolvimento, 2001.

SCHOOF, J. T.; PRYOR, S. C. Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. International Journal of Climatology, v. 21, n. 7, p. 773-790, 2001.

SIGRIST, F.; KÜNSCH, H. R.; STAHEL, W. A. A dynamic nonstationary spatio-temporal model for short term prediction of precipitation. Annals of Applied Statistics, v. 6, n. 4, p. 1452-1477, 2012.

SILVA, A. C. Estudos Climáticos e Ambiente Construído no Município de Descalvado - SP. 92 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2001.

TAMA, D. R.; LIMANTARA, L. M.; SUHARTANTO, E.; DEVIA, Y. P. The Reliability of W-flow Run-off-Rainfall Model in Predicting Rainfall to the Discharge. Civil Engineering Journal, v. 9, n. 7, p. 15, 2023.

VAN ECK, N. J.; WALTMAN, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, n. 2, p. 523-538, 2010.

VAN NUNEN, K.; LI, J.; RENIERS, G.; PONNET, K. Bibliometric analysis of safety culture research. Safety Science, v. 108, p. 248-258, 2018.

VECCHIA, F. Projeto Conforto Térmico. Estudo Comparativo do comportamento térmico de sistemas de cobertura. Projeto Conforto, Convênio Eternit S.A. São Carlos: EESC/FIPAI, 2001.

WILLEMS, P. A spatial rainfall generator for small spatial scales. Journal of Hydrology, v. 252, n. 1-4, p. 126-144, 2001.

WU, J. Thirty years of Landscape Ecology (1987–2017): retrospects and prospects. Landscape Ecology, v. 32, n. 12, p. 2225-2239, 2017.

Publicado

2025-10-20

Cómo citar

Arruda, J. A. M., de Vasconcelos , R. N., & Santos , R. L. (2025). ANÁLISIS DE MODELOS DE ESTIMACIÓN DE PRECIPITACIÓN UTILIZANDO SERIES DE TIEMPO: UN ANÁLISIS BIBLIOMÉTRICO. Revista De Geopolítica, 16(5), e807 . https://doi.org/10.56238/revgeov16n5-046