ENVIRONMENTALLY TOLERATED CONCENTRATION OF GLYPHOSATE INDUCES BEHAVIORAL ALTERATIONS IN DANIO RERIO

Authors

  • Beatriz Wierzbicki
  • Pedro Daniel Grando de Souza
  • Alan Deivid Pereira
  • Marcos Otávio Ribeiro
  • Deise Borchhardt Moda
  • Fabrícia de Souza Predes
  • Ana Carolina de Deus Bueno Krawczyk

DOI:

https://doi.org/10.56238/revgeov16n5-185

Keywords:

Ecotoxicology, Herbicide, Zebra Fish, Brazil, Publichealth

Abstract

Over the past decades, Brazil has been increasing the use of various classes of pesticides in different types of monoculture crops, resulting in considerable contamination of water resources. This contamination represents a growing threat to public health and the entire aquatic biota. Given the public health issues and the damage to aquatic life caused by the excessive use of pesticides, the present study aimed to evaluate the behavioral alterations of the fish Danio rerio exposed to a concentration of 65 μg/L of the herbicide glyphosate, corresponding to the maximum concentration allowed in drinking water (Class 1 waters), as established by CONAMA Resolution of 2005. Our results showed that D.rerio specimens exposed to glyphosate needed to be closer to their prey before moving toward it and tended to remain longer in the light compartment, escaping more slowly from a simulated predator attack. These alterations indicate signs of increased vulnerability to predation, compromising the exploratory behavior of D. rerio. Our findings support the hypothesis that lethality tests commonly used in bioassays may be insufficient to assess the real impact of aquatic pollutants. Therefore, glyphosate concentrations considered acceptable under current legislation may still pose ecological and public health risks, reinforcing the need to reassess the established limits.

Downloads

Download data is not yet available.

References

Américo, J. H. P., Manoel, L. O., Torres, N. H., & Ferreira, L. F. R. (2015). The use of pesticides and their impacts on aquatic ecosystems. Scientific Journal: ANAP Brazil, 13, 101–115. https://doi.org/10.17271/1984324081320151149

Bass, S. L. S., & Gerlai, R. (2008). The zebrafish (Danio rerio) responds differentially to stimulus fish: The effects of sympatric and allopatric predators and harmless fish. Behavioural Brain Research, 186(1), 107–117. https://doi.org/10.1016/j.bbr.2007.07.037

Begon, M., Townsend, C. R., & Harper, J. L. (2007). Ecology: From individuals to ecosystems (4th ed.). Artmed.

Brasil. Ministério da Saúde. (2021). Portaria GM/MS nº 888, de 4 de maio de 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. http://www.gov.br/saude [Acesso em 5 ago. 2025].

Brasil. Ministério do Meio Ambiente. (2005). Resolução CONAMA nº 357, de 15 de junho de 2005.

Brasil. Ministério do Desenvolvimento, Indústria, Comércio e Serviços (MDIC). Secretaria de Comércio Exterior (Secex). (2025). Comex Stat: Importações brasileiras de agrotóxicos (jan.–set. 2025). http://comexstat.mdic.gov.br [Acesso em 6 ago. 2025].

Conselho Regional de Engenharia e Agronomia de Alagoas (CREA-AL). (2019). Relatório técnico sobre o uso de agrotóxicos no Estado de Alagoas. CREA-AL. https://www.crea-al.org.br/ [Acesso em 10 out. 2025].

Elias, M. A., Siegloch, A. E., & Agostinetto, L. (2022). Acute poisoning by organophosphate pesticides: An integrative review. Research, Society and Development, 11(9), Article e11611931606. https://doi.org/10.33448/rsd-v11i9.31606

Embrapa. (s.d.). Pesticides in Brazil. Embrapa – Agência de Informação Tecnológica. Recuperado em 11 de outubro de 2025, de https://www.embrapa.br/

Food and Agriculture Organization of the United Nations (FAO). (2022). FAO statistics yearbook 2022. FAO. Recuperado em 11 de outubro de 2025, de https://www.fao.org/statistics/yearbook/en/

Grzesiuk, M., Gryglewicz, E., Bentkowski, P., & Pijanowska, J. (2023). Impact of fluoxetine on herbivorous zooplankton and planktivorous fish. Environmental Toxicology and Chemistry, 42(2), 385–392. https://doi.org/10.1002/etc.5525

Iniciativa Nacional para a Conservação da Anta Brasileira (INCAB) & Instituto de Pesquisas Ecológicas (IPÊ). (2024). Impact of pesticides and metals on the Brazilian tapir (Tapirus terrestris) in the State of Mato Grosso do Sul, Brazil, and implications for human and environmental health: Technical report. IPÊ. Recuperado em 15 de outubro de 2025.

Magalhães, D. P., & Ferrão-Filho, A. S. (2008). Ecotoxicology as a tool in the biomonitoring of aquatic ecosystems. Oecologia Brasiliensis, 12(3), 355–381.

Melefa, T. D., & Nwani, C. D. (2021). The imidazole antifungal clotrimazole alters behavior, brain acetylcholinesterase, and oxidative stress biomarkers in African catfish Clarias gariepinus (Burchell, 1822). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 248, Article 109108. https://doi.org/10.1016/j.cbpc.2021.109108

Meneses, B. B., & Piva, J. C. (2025). Use of pesticides in Brazil: Civil liability and environmental damage. Facit Journal of Business and Technology, 62.

Nascimento, L. C., & Naval, L. P. (2019). Toxicity determined by the use of pesticides in water quality indicator organisms. Brazilian Journal of Environmental Sciences, (53), 69–80. https://doi.org/10.5327/Z2176-947820190466

Oliveira, M. L. F., & Zambrone, F. A. D. (2006). Vulnerability and pesticide poisoning among family farmers in Paraná, Brazil. Ciência, Cuidado e Saúde, 99–106. https://doi.org/10.4025/ciencuidsaude.v5i0.5173

Oliveira, T. M., Carneiro, F. M., & Wastowski, I. J. (2022). Pesticides in aquatic ecosystems and their interaction with algae and cyanobacteria: A scientometric analysis. Fronteira: Journal of Social, Technological and Environmental Sciences, 1, 88–111. https://doi.org/10.21664/2238-8869.2022v11i1.p88-111

Pandey, K., Ashique, F., Kumar, D., & Khan, P. K. (2024). Acute zinc toxicity in relation to LC50, morphological changes, and behavioral responses in freshwater fish Clarias batrachus. Biospectra, 19(2), 17–22. https://doi.org/10.5281/zenodo.14991623

Ribeiro, N. U. F., & Américo-Pinheiro, J. H. P. (2018). Fish as bioindicators of pesticides in aquatic environments. Scientific Journal: ANAP Brazil, 22. https://doi.org/10.17271/19843240112220181859

Ridha, A. M. A., & Mohsin, R. I. (2024). Behavioral changes and histological effects of xenobiotic exposure in aquatic organisms. E3S Web of Conferences, 139, Article 06005. https://doi.org/10.1051/bioconf/202413906005

Rodrigues, M. B., Silva, C. A. M., Chong-Silva, D. C., & Chong-Neto, H. J. (2024). Pesticides and human health. Jornal de Pediatria, 101, S70–S76. https://doi.org/10.1016/j.jped.2024.11.008

Sandoval-Herrera, N., Mena, F., Espinoza, M., & Romero, A. (2019). Organophosphate pesticide neurotoxicity may reduce fish escape ability from predation under low-dose exposure. Scientific Reports, 9(1), Article 10391. https://doi.org/10.1038/s41598-019-46804-6

Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behavior: Integrating behavioral and physiological indicators of toxicity. Aquatic Toxicology, 68(4), 369–392. https://doi.org/10.1016/j.aquatox.2004.03.016

Soares-da-Silva, D. V., Santos, M. M., Soares, G. B., Nascimento, V. S., Guarda, E. A., Oliveira, V. M., Silva, J. F. M., & Guarda, P. M. (2025). Ecotoxicological studies with pesticides: A systematic literature review. Observatorio de la Economía Latinoamericana, 23(8), Article e11244.

Toussaint, S., Pompermaier, A., Chagas, F. B., Tamagno, W. A., Freeman, J. L., Hartmann, P. A., & Hartmann, M. (2025). Environmentally relevant concentrations of a Bacillus thuringiensis-based biopesticide impair zebrafish behavior. Aquatic Ecology, 59. https://doi.org/10.1007/s10452-025-10241-7

Veiga, M. M., Silva, D. M., Veiga, L. B. E., & Faria, M. V. C. (2006). Analysis of water system contamination by pesticides in a small rural community in southeastern Brazil. Cadernos de Saúde Pública, 22(11), 2391–2399. https://doi.org/10.1590/S0102-311X2006001100013

Weis, J. S., Smith, G., Zhou, T., Santiago-Bass, C., & Weis, P. (2001). Effects of contaminants on behavior: Biochemical mechanisms and ecological consequences. BioScience, 51(3), 209–217. https://doi.org/10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2

Wierzbicki, B., Werus, G., Ribeiro, M. O., Pereira, A. D., & Bueno Krawczyk, A. C. D. (2025). The potential of carbamate and organophosphate pesticides to alter fish behavioral patterns and their environmental implications in water bodies: A literature review. Contribuciones a las Ciencias Sociales, 3, 1–22. https://doi.org/10.55905/revconv.18n.3-181

Downloads

Published

2025-11-25

How to Cite

Wierzbicki, B., de Souza, P. D. G., Pereira, A. D., Ribeiro, M. O., Moda, D. B., Predes, F. de S., & Krawczyk, A. C. de D. B. (2025). ENVIRONMENTALLY TOLERATED CONCENTRATION OF GLYPHOSATE INDUCES BEHAVIORAL ALTERATIONS IN DANIO RERIO. Revista De Geopolítica, 16(5), e1018. https://doi.org/10.56238/revgeov16n5-185